Publications by authors named "Beaujean R"

Space radiation hazards are recognized as a key concern for human space flight. For long-term interplanetary missions, they constitute a potentially limiting factor since current protection limits for low-Earth orbit missions may be approached or even exceeded. In such a situation, an accurate risk assessment requires knowledge of equivalent doses in critical radiosensitive organs rather than only skin doses or ambient doses from area monitoring.

View Article and Find Full Text PDF

The experiment 'Dosimetric Mapping' conducted as part of the science program of NASA's Human Research Facility (HRF) between March and August 2001 was designed to measure integrated total absorbed doses (ionising radiation and neutrons), heavy ion fluxes and its energy, mass and linear energy transfer (LET) spectra, time-dependent count rates of charged particles and their corresponding dose rates at different locations inside the US Lab at the International Space Station. Owing to the variety of particles and energies, a dosimetry package consisting of thermoluminescence dosemeter (TLD) chips and nuclear track detectors with and without converters (NTDPs), a silicon dosimetry telescope (DOSTEL), four mobile silicon detector units (MDUs) and a TLD reader unit (PILLE) with 12 TLD bulbs as dosemeters was used. Dose rates of the ionising part of the radiation field measured with TLD bulbs applying the PILLE readout system at different locations varied between 153 and 231 microGy d(-1).

View Article and Find Full Text PDF

The active dosemeter DOSTEL based on two silicon planar detectors was flown on civil aircraft flights to study the radiation exposure of air crew members. The altitude and latitude dependence of count and dose rates as well as long-term variations are measured. After calibration of the DOSTEL response against measurements of a TEPC instrument, total dose-equivalent values for various flights are compared with H*(10) calculations by EPCARD yielding a ratio of 1.

View Article and Find Full Text PDF

Exposure of crew to the space radiation environment poses one of the most significant problems in long term missions in low earth orbits and in interplanetary missions. Accurate personal dose measurement will become increasingly important especially during manned missions to Mars. A series of instruments suitable for on-board dose, flux and LET measurements has been developed by the authors'.

View Article and Find Full Text PDF

The Mobile Radiation Exposure Control System's (Liulin-4 type) main purpose is to monitor simultaneously the doses and fluxes at 4 independent places. It can also be used for personnel dosimetry. The system consists of 4 battery-operated 256-channel dosimeters-spectrometers.

View Article and Find Full Text PDF

The dosimetry telescope (DOSTEL) was flown on the MIR orbital station during October 1997-January 1998. The mission average contributions to the absorbed dose rates (in water) were 126 +/- 4 microGy/d and 121 +/- 13 microGy/d for the GCR and the SAA component, respectively. The mean quality factors (ICRP60) deduced from the LET-spectra are 3.

View Article and Find Full Text PDF

Radiation measurements made onboard the MIR Orbital Station have spanned nearly a decade and covered two solar cycles, including one of the largest solar particle events, one of the largest magnetic storms, and a mean solar radio flux level reaching 250 x 10(4) Jansky that has been observed in the last 40 years. The cosmonaut absorbed dose rates varied from about 450 microGy day-1 during solar minimum to approximately half this value during the last solar maximum. There is a factor of about two in dose rate within a given module, and a similar variation from module to module.

View Article and Find Full Text PDF

In a series of COSMOS satellite flights plastic nuclear track detectors have been exposed in low-earth orbits to monitor anomalous cosmic rays (ACR) at energies below 25 MeV/nuc. The analysis of energy spectra has now been extended to energies up to 40 MeV/nuc for two exposures aboard COSMOS 2260 in 1993 and COSMOS 2311 in 1995. Our data on trapped ACR (TACR) oxygen energy spectra might indicate the influence of energy-dependent stripping probabilities and the presence of multiply charged ACR oxygen at high energies as reported by latest SAMPEX observations.

View Article and Find Full Text PDF

Plastic nuclear track detectors were used to measure the contribution of High charge Z and energy E (HZE) particles to the radiation exposure of manned space missions. Results from numerous space missions in the orbit planned for the International Space Station are compared. The measurements cover the declining phase of the last solar cycle during the past 7 years and various shielding conditions inside the US Space Shuttle and the Russian MIR-station.

View Article and Find Full Text PDF

The interaction of high-energy space radiation with spacecraft materials generates a host of secondary particles, some, such as neutrons, are more biologically damaging and penetrating than the original primary particles. Before committing astronauts to long term exposure in such high radiation environments, a quantitative understanding of the exposure and estimates of the associated risks are required. Energetic neutrons are traditionally difficult to measure due to their neutral charge.

View Article and Find Full Text PDF

Detector packages consisting of plastic nuclear track detectors, nuclear emulsions, and theromoluminescence detectors were exposed at different locations inside the space laboratory Spacelab and at the astronauts' body and in different sections of the MIR space station. Total dose, particle fluence rate and linear energy transfer (LET) spectra of heavy ions, number of nuclear disintegrations and fast neutron fluence rates were determined of each exposure. The dose equivalent received by the Payload specialists (PSs) were calculated from the measurements, they range from 190 microSv d-1 to 770 microSv d-1.

View Article and Find Full Text PDF

The radiation exposure inside the spacecraft in low earth orbit was investigated with a telescope based on two silicon planar detectors during three NASA shuttle-to-MIR missions (inclination 51.6 deg, altitude about 380 km). Count and dose rate profiles were measured, as well as separate linear energy transfer (LET) spectra, for the galactic cosmic rays (GCR) and the trapped radiation encountered in the South Atlantic Anomaly (SAA).

View Article and Find Full Text PDF

The radiation exposures on 12 flights of German airlines were measured with an active dosemeter based on two silicon semiconductors. The dependence on the date, altitude and route of the flights was studied. Measured dose rates and preliminary dose equivalent rates of the individual flights are given and compared with model calculations.

View Article and Find Full Text PDF

The dosimetric package used inside Biorack on board STS76, STS81 and STS84 comprises passive detector stacks built from plastic nuclear track detectors (PNTDs), thermoluminescence detectors (TLDs) and one or two active DOSTEL (DOSimetric TELescope) units using planar silicon detectors. Five passive detector stacks were exposed at different places inside the BIORACK incubators and in different stowage positions. DOSTEL units were exposed inside the 22 degrees C incubator in all flights.

View Article and Find Full Text PDF

Detector packages consisting of thermoluminescence detectors (TLDs), nuclear emulsions and plastic nuclear track detectors were exposed in different locations inside spacecraft. The detector systems, which supplement each other in their registration characteristics, allow the recording of biologically relevant portions of the radiation field independently. Results are presented and compared with calculations.

View Article and Find Full Text PDF

Detector packages consisting of plastic nuclear track detectors, nuclear emulsions, and thermoluminescence detectors were exposed inside BIORACK during the Spacelab missions IML1 and IML2, in different sections of the MIR space station, and inside the Spacelab module at rack front panels or stowage lockers and in the Spacelab tunnel during D2. In addition, during D2, each Payload Specialist (PS) has worn three permanent detector packages; one at the neck; one at the waist; and one at the ankle. Total dose measurements, particle fluence rate and LET spectra, number of nuclear disintegrations and neutron dose from this exposure are given in this report.

View Article and Find Full Text PDF

Heavy ions (Z = 8-26) with energies far below the geomagnetic cutoff energy were measured in three different plastic nuclear track detector experiments on the 28.5 degrees inclination orbit of the NASA satellite Long Duration Exposure Facility (LDEF) at 460 km mean altitude. The results of the three experiments M0002 (Kiel University, Germany), A0015 (Deutsche Gesellschaft fur Luft- und Raumfahrt (= DLR) Koln, Germany) and HIIS (Naval Research Laboratory (= NRL) Washington, DC, U.

View Article and Find Full Text PDF

Seven detector packages consisting of plastic nuclear track detectors, nuclear emulsions and thermoluminescence dosimeters were exposed in different locations inside BIORACK during the IML2 mission. The detectors supplement each other in their registration characteristics and cover well the different contributions of the space radiations to the dose. In this report, results are given on total dose measurements, cosmic ray flux and neutron dose.

View Article and Find Full Text PDF

Aboard the NASA satellite Long Duration Exposure Facility (LDEF) heavy ions of nuclear charge Z = 8-26 were detected with energies between 15 and 50 MeV/nuc which are far below the cutoff energy required of fully stripped ions to reach the LDEF orbit. The arrival directions and the falling energy spectra of these particles are consistent with a trapped component incident in the South Atlantic Anomaly at L = 1.4-1.

View Article and Find Full Text PDF

Detector packages consisting of thermoluminescence detectors (TLDs), nuclear emulsions and plastic nuclear track detectors were exposed in different sections of the MIR space station, inside the Spacelab during the IML1 mission, and inside Spacelab module and tunnel during the D2 mission. This report concentrates on total dose measurements with TLDs during these mission. The results are discussed and compared to results of former missions and to calculations.

View Article and Find Full Text PDF

Detector packages were exposed on the European Retrievable Carrier (EURECA) as part of the Biostack experiment inside the Exobiology and Radiation Assembly (ERA) and at several locations around EURECA. The packages consist of different plastic nuclear track detectors, nuclear emulsions and thermoluminescence dosimeters (TLDs). Evaluation of these detectors yields data on absorbed dose and particle and linear energy transfer (LET) spectra.

View Article and Find Full Text PDF

The results of dosimetric measurements are presented which were performed as part of a German experiment package flown onboard the Russian space station MIR. These results are compared to those of previous missions: the first United States Spacelab mission and the first German Spacelab mission. Detector packages consisting of plastic nuclear track detectors, nuclear emulsions, and thermoluminescence dosimeters were exposed in different sections of the Russian space station.

View Article and Find Full Text PDF

A stack of CR-39 track detectors was exposed on the NASA satellite LDEF and recovered after almost 6 years in space. The quick look analysis yielded heavy ion tracks on a background of low energy secondaries from proton interactions. The detected heavy ions show a steep energy spectrum which indicates a radiation belt origin.

View Article and Find Full Text PDF

The objective of the experiment was to measure the radiation environment inside and outside of the biosatetlite COSMOS 1887. For this purpose, detector packages were built up consisting of plastic detectors and nuclear emulsions having different linear energy transfer (LET) thresholds in particle registration, and thermoluminescence dosimeters (TLD). Particle fluence rates, LET-spectra and absorbed dose are presented.

View Article and Find Full Text PDF

Among the biological problems that arise in long duration spaceflights, the effects of weightlessness and ionizing radiation appear to be the two main risk factors. Eggs of the stick insect Carausius morosus were exposed to spaceflight conditions during the 12.56 day Biosatellite mission Cosmos 1887.

View Article and Find Full Text PDF