Objective: Existing methods to evaluate skin care products suffer limitations. This is the case for ex vivo skin explants, a first-choice 3D model. While essential to analyse mid- to long-term biological effects, this classical model hinders assessing microrelief variations.
View Article and Find Full Text PDFCrucial for skin homeostasis, synthesis and degradation of extracellular matrix components are orchestrated by dermal fibroblasts. During aging, alterations of component expression, such as collagens and enzymes, lead to reduction of the mechanical cutaneous tension and defects of skin wound healing. The aim of this study was to better understand the molecular alterations underwent by fibroblasts during aging by comparing secretomic and proteomic signatures of fibroblasts from young (<35years) and aged (>55years) skin donors, in quiescence or TGF-stimulated conditions, using HLPC/MS.
View Article and Find Full Text PDFWhatever the exposure route, chemical, physical and biological pollutants modify the whole organism response, leading to nerve, cardiac, respiratory, reproductive, and skin system pathologies. Skin acts as a barrier for preventing pollutant modifications. This review aims to present the available scientific models, which help investigate the impact of pollution on the skin.
View Article and Find Full Text PDFObjective: Because they limit, even reverse, age-induced skin alterations, retinoids became a staple in cosmetology. However, their use can result in undesired secondary effects and there is a demand for natural sources of compounds with retinoid-like effects. A preliminary screening identified a Harungana madagascariensis plant extract (HME) as possibly inducing genes stimulated by retinol.
View Article and Find Full Text PDFAging is a multifactorial process that results in progressive loss of regenerative capacity and tissue function while simultaneously favoring the development of a large array of age-related diseases. Evidence suggests that the accumulation of senescent cells in tissue promotes both normal and pathological aging. Oxic stress is a key driver of cellular senescence.
View Article and Find Full Text PDFWhen developing new cosmetics, it is extremely important to consider the safety of consumers. Absence of potential irritancy is generally assessed using an OECD TG439 compliant Reconstructed Human Epidermis (RHE) systems and MTT assays, resulting in an irritant/not irritant classification. To gain insight into the irritancy of molecules/finished cosmetic products and to predict the outcome of irritation tests performed on subjects whatever their nature, we developed a test that uses skin explants and histological analysis.
View Article and Find Full Text PDFGao et al. report that the observed reduction in adipose lipolysis with age in women could be explained by an upregulation of the catecholamine-degradation pathway in subcutaneous adipocytes. However, in contrast to findings in mice, these pathways are enriched in adipocytes and not in immune cells, suggesting species-specific differences in aging mechanisms.
View Article and Find Full Text PDFBackground: Transcriptome analysis of abdominal subcutaneous white adipose tissue (sWAT) has identified important obesity-associated disturbances. However, the relation between sWAT transcriptome and long-term future changes in body weight remains elusive.
Objective: To investigate sWAT transcriptome signatures before and after long-term weight changes and assess their predictive value for body weight changes.
The post-menopausal decrease in estrogen circulating levels results in rapid skin deterioration pointing out to a protective effect exerted by these hormones. The identity of the skin cell type responding to estrogens is unclear as are the cellular and molecular processes they elicit. Here, we reported that lack of estrogens induces rapid re-organization of the human dermal fibroblast cytoskeleton resulting in striking cell shape change.
View Article and Find Full Text PDFThe aging process, especially of the skin, is governed by changes in the epidermal, dermo-epidermal, and dermal compartments. Type I collagen, which is the major component of dermis extracellular matrix (ECM), constitutes a prime target for intrinsic and extrinsic aging-related alterations. In addition, under the aging process, pro-inflammatory signals are involved and collagens are fragmented owing to enhanced matrix metalloproteinase activities, and fibroblasts are no longer able to properly synthesize collagen fibrils.
View Article and Find Full Text PDFTranscriptional mechanisms regulating type I collagen genes expression in physiopathological situations are not completely known. In this study, we have investigated the role of nuclear factor-κB (NF-κB) transcription factor on type I collagen expression in adult normal human (ANF) and scleroderma (SF) fibroblasts. We demonstrated that NF-κB, a master transcription factor playing a major role in immune response/apoptosis, down-regulates COL1A1 expression by a transcriptional control involving the -112/-61 bp sequence.
View Article and Find Full Text PDFBackground: Desflurane during early reperfusion has been shown to postcondition human myocardium. Whether it involves "reperfusion injury salvage kinase" pathway remains incompletely studied. The authors tested the involvement of 70-kDa ribosomal protein S6 kinase, nitric oxide synthase, glycogen synthase kinase (GSK)-3beta, and mitochondrial permeability transition pore in desflurane-induced postconditioning.
View Article and Find Full Text PDFBackground: Isoflurane and sevoflurane have been shown to elicit myocardial postconditioning, but the effect of desflurane remain unknown. The authors studied the mechanisms involved in desflurane-induced myocardial postconditioning.
Methods: Contracting isolated human right atrial trabeculae (34 degrees C, stimulation frequency 1 Hz) were exposed to 30-min hypoxia followed by 60-min reoxygenation.
Articular cartilage contains an extracellular matrix with characteristic macromolecules such as type II collagen. Because this tissue is avascular and mature chondrocytes do not proliferate, cartilage lesions have a limited capacity for healing after trauma. Autologous chondrocyte implantation (ACI) is widely used for the treatment of patients with focal damage to articular cartilage.
View Article and Find Full Text PDFIn osteoarthritis (OA), interleukin-1 (IL-1) stimulates the expression of metalloproteinases and aggrecanases, which induce cartilage degradation. IL-1 is also capable of reducing the production of cartilage-specific macromolecules, including type II collagen, through modulation of the transcription factors Sp1 and Sp3. Conversely, Transforming growth factor-beta (TGF-beta) counteracts with most of the IL-1 deleterious effects and contributes to cartilage homeostasis.
View Article and Find Full Text PDFDespite several investigations, the transcriptional mechanisms which regulate the expression of both type I collagen genes (COL1A1 and COL1A2) in either physiological or pathological situations, such as scleroderma, are not completely known. In this study, we determined the effects of both native ichtyan chondroïtin sulphate (CS) and its derived hydrolytic fragments (CSf) on human normal (NF) and scleroderma (SF) fibroblasts. Here, we demonstrate for the first time that CS and CSf exert an inhibitory effect on type I collagen protein synthesis and decrease the corresponding mRNA steady-state levels of COL1A1 and COL1A2 in NF and SF.
View Article and Find Full Text PDFType II collagen is composed of alpha1(II) chains encoded by the COL2A1 gene. Alteration of this cartilage marker is a common feature of osteoarthritis. Interleukin-6 (IL-6) is a pro-inflammatory cytokine that needs a soluble form of receptor called sIL-6R to exert its effects in some cellular models.
View Article and Find Full Text PDFDespite several investigations, the transcriptional mechanisms that regulate the expression of both type I collagen genes (COL1A1 and COL1A2) in either physiological or pathological situations, such as scleroderma, are not completely known. We have investigated the role of hc-Krox transcription factor on type I collagen expression by human dermal fibroblasts. hc-Krox exerted a stimulating effect on type I collagen protein synthesis and enhanced the corresponding mRNA steady-state levels of COL1A1 and COL1A2 in foreskin fibroblasts (FF), adult normal fibroblasts (ANF), and scleroderma fibroblasts (SF).
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2005
Chondrocyte glycosaminoglycan (GAG) synthesis is regulated by the availability of UDP-glucuronate, the substrate of glucuronosyl transferases which form the GAG chains in proteoglycans and hyaluronan. UDP-glucose dehydrogenase (UDPGD) is therefore a key enzyme in the synthesis of UDP-glucuronate from glucose. However, the mechanisms regulating its expression in chondrocytes are not fully understood.
View Article and Find Full Text PDF