Publications by authors named "Beaucamp A"

Lignin-derived porous carbons have great potential for energy storage applications. However, their traditional synthesis requires highly corrosive activating agents in order to produce porous structures. In this work, an environmentally friendly and unique method has been developed for preparing lignin-based 3D spherical porous carbons (LSPCs).

View Article and Find Full Text PDF

In this study, hydrogels based on gelatin and lignin were fabricated as efficient drug carriers for Ribavirin. The obtained hydrogels were characterized by scanning electron microscopy (SEM), ATR-FTIR spectroscopy, differential scanning calorimetry (DSC), mechanical compression and rheometry. Results showed that the pore structure, viscoelastic behavior and swelling ability significantly influenced by varying lignin content and crosslinker ratio.

View Article and Find Full Text PDF

Sustainable materials are attracting a lot of attention since they will be critical in the creation of the next generation of products and devices. In this study, hydrogels were effectively synthesized utilizing lignin, a non-valorised biopolymer from the paper industry. This study proposes a method based on utilizing lignin to create highly swollen hydrogels using poly(ethylene) glycol diglycidyl ether (PEGDGE) as a crosslinking agent.

View Article and Find Full Text PDF

Cellulose, an abundant natural polymer, has promising potential to be used for energy storage systems because of its excellent mechanical, structural, and physical characteristics. This review discusses the structural features of cellulose and describes its potential application as an electrode, separator, and binder, in various types of high-performing batteries. Various surface and structural characteristics of cellulose (e.

View Article and Find Full Text PDF

Pseudo-random paths are a useful tool to reduce mid-spatial frequency errors created in the processing of optical surfaces by sub-aperture polishing tools. Several types of patterns have been proposed, including hexagonal, square and circular, but prior literature has largely focused on flat and gently curved surfaces. Here, an extension of the circular-random path to strongly curved aspheric and freeform surfaces is proposed.

View Article and Find Full Text PDF

CCD arrays encode color information via uniformly distributed red, green and blue pixels. Therefore, even a perfectly achromatic system projecting an image onto a CCD plane cannot possibly associate a single object point with the 3 or more discrete pixels encoding color content. Here, we propose and demonstrate a micro-lens array (MLA) design that simultaneously corrects chromatic aberrations and separates color channels to spatially distinct pixels.

View Article and Find Full Text PDF

In optics fabrication technologies such as computer controlled optical surfacing (CCOS), accurate computation of the dwell time map plays an essential role in the deterministic performance of the fabrication process. However, it is still difficult for existing methods to derive smooth dwell time maps that reduce dynamic stressing on the machine especially at the aperture edge region, while retaining fine correction capability on freeform optics. To answer these challenges, we propose a new method based on Zernike decomposition and improved differential evolution optimization of the dwell time map, which can be applied to time-dependent optics fabrication processes such as fluid jet machining.

View Article and Find Full Text PDF

Development of cost-effective and increasingly efficient sustainable materials for energy-storage devices, such Li-ion batteries, is of crucial future importance. Herein, the preparation of carbon nanofibres from biopolymer blends of lignin (byproduct from the paper and pulp industry) and polylactic acid (PLA) or a thermoplastic elastomeric polyurethane (TPU) is described. SEM analysis shows the evolving microstructural morphology after each processing step (electrospinning, stabilisation and carbonisation).

View Article and Find Full Text PDF

A new category of circular pseudo-random paths is proposed in order to suppress repetitive patterns and improve surface waviness on ultra-precision polished surfaces. Random paths in prior research had many corners, therefore deceleration of the polishing tool affected the surface waviness. The new random path can suppress velocity changes of the polishing tool and thus restrict degradation of the surface waviness, making it suitable for applications with stringent mid-spatial-frequency requirements such as photomask blanks for EUV lithography.

View Article and Find Full Text PDF

Background: We have developed edge-control for the Precessions TM process suitable for fast fabrication of large mirror segments, and other applications sensitive to edge mis-figure. This has been applied to processing of European extremely large telescope (E-ELT) prototype mirror-segments, meeting the specification on maximum edge mis-figure. However we have observed residuals that have proved impossible to correct with this approach, being in part the legacy of asymmetries in the input edge-profiles.

View Article and Find Full Text PDF

The progressive transition from Excimer to extreme ultraviolet (EUV) lithography is driving a need for flatter and smoother photomask blanks. It is, however, proving difficult to meet the next-generation specification with the conventional chemical mechanical polishing technology commonly used for finishing photomask blanks. This paper reports on the application of subaperture computer numerical control precessed bonnet polishing technology to the corrective finishing of photomask substrates for EUV lithography.

View Article and Find Full Text PDF

Edge mis-figure is regarded as one of the most difficult technical issues for manufacturing the segments of extremely large telescopes, which can dominate key aspects of performance. A novel edge-control technique has been developed, based on 'Precessions' polishing technique and for which accurate and stable edge tool influence functions (TIFs) are crucial. In the first paper in this series [D.

View Article and Find Full Text PDF

Segment-edges for extremely large telescopes are critical for observations requiring high contrast and SNR, e.g. detecting exo-planets.

View Article and Find Full Text PDF

The Precessions process polishes complex surfaces from the ground state preserving the ground-in form, and subsequently rectifies measured form errors. Our first paper introduced the technology and focused on the novel tooling. In this paper we describe the unique CNC machine tools and how they operate in polishing and correcting form.

View Article and Find Full Text PDF