Publications by authors named "Beatriz Sanz Bernardo"

Introduction: Bluetongue virus (BTV) is an arthropod-borne that is almost solely transmitted by biting midges and causes a globally important haemorrhagic disease, bluetongue (BT), in susceptible ruminants. Infection with BTV is characterised by immunosuppression and substantial lymphopenia at peak viraemia in the host.

Methods: In this study, the role of cell-mediated immunity and specific T-cell subsets in BTV pathogenesis, clinical outcome, viral dynamics, immune protection, and onwards transmission to a susceptible vector is defined in unprecedented detail for the first time, using an arboviral infection model system that closely mirrors natural infection and transmission of BTV.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) remains a leading cause of economic loss in pig farming worldwide. Existing commercial vaccines, all based on modified live or inactivated PRRSV, fail to provide effective immunity against the highly diverse circulating strains of both PRRSV-1 and PRRSV-2. Therefore, there is an urgent need to develop more effective and broadly active PRRSV vaccines.

View Article and Find Full Text PDF

Lumpy skin disease virus (LSDV) causes severe disease in cattle and water buffalo and is transmitted by hematophagous arthropod vectors. Detailed information of the adaptive and innate immune response to LSDV is limited, hampering the development of tools to control the disease. This study provides an in-depth analysis of the immune responses of calves experimentally inoculated with LSDV either needle-inoculation or arthropod-inoculation using virus-positive and vectors.

View Article and Find Full Text PDF

Lumpy skin disease virus (LSDV) is a poxvirus that causes severe systemic disease in cattle and is spread by mechanical arthropod-borne transmission. This study quantified the acquisition and retention of LSDV by four species of Diptera (Stomoxys calcitrans, Aedes aegypti, Culex quinquefasciatus, and Culicoides nubeculosus) from cutaneous lesions, normal skin, and blood from a clinically affected animal. The acquisition and retention of LSDV by Ae.

View Article and Find Full Text PDF

Lumpy skin disease virus (LSDV) is a vector-transmitted poxvirus that causes disease in cattle. Vector species involved in LSDV transmission and their ability to acquire and transmit the virus are poorly characterized. Using a highly representative bovine experimental model of lumpy skin disease, we fed four model vector species (, , , and ) on LSDV-inoculated cattle in order to examine their acquisition and retention of LSDV.

View Article and Find Full Text PDF

Lumpy skin disease is a high-consequence disease in cattle caused by infection with the poxvirus lumpy skin disease virus (LSDV). The virus is endemic in most countries in Africa and an emerging threat to cattle populations in Europe and Asia. As LSDV spreads into new regions, it is important that signs of disease are recognized promptly by animal caregivers.

View Article and Find Full Text PDF

This study investigated the potential of pooled milk as an alternative sample type for foot-and-mouth disease (FMD) surveillance. Real-time RT-PCR (rRT-PCR) results of pooled milk samples collected weekly from five pooling facilities in Nakuru County, Kenya, were compared with half-month reports of household-level incidence of FMD. These periodic cross-sectional surveys of smallholder farmers were powered to detect a threshold household-level FMD incidence of 2.

View Article and Find Full Text PDF

Since 2015, outbreaks of foot-and-mouth disease (FMD) in the Middle East have been caused by a new emerging viral lineage, A/ASIA/G-VII. vaccine matching data indicated that this virus poorly matched (low r-value) with vaccines that were being used in the region as well as most other commercially available vaccines. The aim of this study was to assess the performance of two candidate vaccines against challenge with a representative field virus from the A/ASIA/G-VII lineage.

View Article and Find Full Text PDF

Foot-and-mouth disease (FMD) is a highly contagious viral infection of cloven-hoofed animals. In Kenya, the disease is endemic with outbreaks typically occurring throughout the year. A cross-sectional study was undertaken in Nakuru County to investigate farmer knowledge and risk factors for clinical disease.

View Article and Find Full Text PDF

The outbreak of bluetongue virus (BTV) serotype 8 (BTV-8) during 2006-2009 in Europe was the most costly epidemic of the virus in recorded history. In 2015, a BTV-8 strain re-emerged in France which has continued to circulate since then. To examine anecdotal reports of reduced pathogenicity and transmission efficiency, we investigated the infection kinetics of a 2007 UK BTV-8 strain alongside the re-emerging BTV-8 strain isolated from France in 2017.

View Article and Find Full Text PDF

Peste des petits ruminants virus (PPRV) is a morbillivirus that produces clinical disease in goats and sheep. We have studied the induction of interferon-β (IFN-β) following infection of cultured cells with wild-type and vaccine strains of PPRV, and the effects of such infection with PPRV on the induction of IFN-β through both MDA-5 and RIG-I mediated pathways. Using both reporter assays and direct measurement of IFN-β mRNA, we have found that PPRV infection induces IFN-β only weakly and transiently, and the virus can actively block the induction of IFN-β.

View Article and Find Full Text PDF

The V proteins of paramyxoviruses are composed of two evolutionarily distinct domains, the N-terminal 75 % being common to the viral P, V and W proteins, and not highly conserved between viruses, whilst the remaining 25 % consists of a cysteine-rich V-specific domain, which is conserved across almost all paramyxoviruses. There is evidence supporting a number of different functions of the V proteins of morbilliviruses in blocking the signalling pathways of type I and II IFNs, but it is not clear which domains of V are responsible for which activities and whether all these activities are required for effective blockade of IFN signalling. We have shown here that the two domains of rinderpest virus V protein have distinct functions: the N-terminal domain acted to bind STAT1, whilst the C-terminal V-specific domain interacted with the IFN receptor-associated kinases Jak1 and Tyk2.

View Article and Find Full Text PDF