Publications by authors named "Beatriz Romero Angeles"

The use of titanium as a biomaterial for the treatment of dental implants has been successful and has become the most viable and common option. However, in the last three decades, new alternatives have emerged, such as polymers that could replace metallic materials. The aim of this research work is to demonstrate the structural effects caused by the fatigue phenomenon and the comparison with polymeric materials that may be biomechanically viable by reducing the stress shielding effect at the bone-implant interface.

View Article and Find Full Text PDF

Dental implants have become an alternative to replace the teeth of people suffering from edentulous and meet the physiological and morphological characteristics (recovering 95% of the chewing function). The evolution and innovation of biomaterials for dental implants have had a trajectory that dates back to prehistory, where dental pieces were replaced by ivory or seashells, to the present day, where they are replaced by metallic materials such as titanium or ceramics such as zirconium or fiberglass. The numerical evaluation focuses on comparing the stress distribution and general displacement between different dental implants and a healthy tooth when applying a force of 850 N.

View Article and Find Full Text PDF

Nowadays, cruciate ligament injuries have increased in incidence, since practicing a sport or physical activity has become a trend in current societies. Although this lifestyle generates multiple benefits, as a consequence, injury has also increased. Due to its nature and complexity, the ligaments of the knee are those that are most frequently affected, mainly the (anterior cruciate ligament).

View Article and Find Full Text PDF

Biofuels represent an energy option to mitigate polluting gases. However, technical problems must be solved, one of them is to improve the combustion process. In this study, the geometry of a piston head for a diesel engine was redesigned.

View Article and Find Full Text PDF

The modelling of biological structures has allowed great advances in Engineering, Biology, and Medicine. In turn, these advances are seen from the design of footwear and sports accessories, to the design of prostheses, accessories and rehabilitation treatments. The reproduction of the various tissues has gone through an important evolution thanks to the development of computer systems and programs.

View Article and Find Full Text PDF

Experimental research on living beings faces several obstacles, which are more than ethical and moral issues. One of the proposed solutions to these situations is the computational modelling of anatomical structures. The present study shows a methodology for obtaining high-biofidelity biomodels, where a novel imagenological technique is used, which applies several CAM/CAD computer programs that allow a better precision for obtaining a biomodel, with highly accurate morphological specifications of the molar and tissues that shape the biomodel.

View Article and Find Full Text PDF

When it is about restorative dental materials, aesthetics is traditionally preferred. This has led to the selection of materials very visually similar to the enamel, but unfortunately, their mechanical properties are not similar. This often translates into disadvantages than advantages.

View Article and Find Full Text PDF

The aim of the present work is to identify the reactions of the dental organs to the different forces that occur during chewing and the transcendence of the union and contact maintained by the dental tissues. The study used a lower first molar biomodel with a real morphology and morphometry and consisting of the three dental tissues (enamel, dentin, and pulp) each with its mechanical properties. In it, two simulations were carried out, as would the process of chewing a food.

View Article and Find Full Text PDF