Publications by authors named "Beatriz Pardo"

Purpose: To evaluate atezolizumab combined with platinum-based chemotherapy (CT) followed by maintenance niraparib for late-relapsing recurrent ovarian cancer.

Methods: The multicenter placebo-controlled double-blind randomized phase III ENGOT-OV41/GEICO 69-O/ANITA trial (ClinicalTrials.gov identifier: NCT03598270) enrolled patients with measurable high-grade serous, endometrioid, or undifferentiated recurrent ovarian cancer who had received one or two previous CT lines (most recent including platinum) and had a treatment-free interval since last platinum (TFIp) of >6 months.

View Article and Find Full Text PDF

Background: At the time of AtTEnd trial design, standard treatment for advanced or recurrent endometrial cancer included carboplatin and paclitaxel chemotherapy. This trial assessed whether combining atezolizumab with chemotherapy might improve outcomes in this population.

Methods: AtTEnd was a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial done in 89 hospitals in 11 countries across Europe, Australia, New Zealand, and Asia.

View Article and Find Full Text PDF

Despite a multimodal radical treatment, mortality of advanced epithelial ovarian cancer (AEOC) remains high. Host-related factors, such as systemic inflammatory response and its interplay with the immune system, remain underexplored. We hypothesized that the prognostic impact of this response could vary between patients undergoing primary debulking surgery (PDS) and those undergoing interval debulking surgery (IDS).

View Article and Find Full Text PDF
Article Synopsis
  • The ORZORA trial tested the effectiveness and safety of olaparib as a maintenance treatment for patients with platinum-sensitive relapsed ovarian cancer who have BRCA mutations or non-BRCA homologous recombination repair mutations after prior chemotherapy.
  • The study involved 177 patients who received olaparib, with a median follow-up showing progression-free survival rates varying between 16.4 and 19.3 months depending on mutation type.
  • Results indicated that most patients with BRCA mutations either improved or maintained their quality of life, and the safety profile of olaparib was consistent with expectations, reinforcing its use for these patients.
View Article and Find Full Text PDF

Calcium is a major regulator of cellular metabolism. Calcium controls mitochondrial respiration, and calcium signaling is used to meet cellular energetic demands through energy production in the organelle. Although it has been widely assumed that Ca-actions require its uptake by mitochondrial calcium uniporter (MCU), alternative pathways modulated by cytosolic Ca have been recently proposed.

View Article and Find Full Text PDF

Aim: To describe patient characteristics, effectiveness and safety in a real-world population treated with niraparib in the Spanish expanded-access programme.

Patients And Methods: This retrospective observational study included women with platinum-sensitive recurrent high-grade serous ovarian cancer who received maintenance niraparib within the Spanish niraparib expanded-access programme. Eligible patients had received ≥2 previous lines of platinum-containing therapy, remained platinum-sensitive after the penultimate line of platinum and had responded to the most recent platinum-containing therapy.

View Article and Find Full Text PDF

Background: Despite impressive progression-free survival (PFS) results from PARP inhibitors (PARPi) in ovarian cancer, concerns about their effect on post-progression treatment outcomes have recently arisen, particularly when administered in the relapsed setting. Overlapping mechanisms of resistance between PARPi and platinum have been described, and optimal therapies upon progression to PARPi are unknown. We communicate real-world data (RWD) on outcomes of subsequent chemotherapy upon progression to PARPi used as maintenance in ovarian cancer relapses, particularly focusing on platinum rechallenge, according to BRCA status.

View Article and Find Full Text PDF

Calcium is an important second messenger regulating a bioenergetic response to the workloads triggered by neuronal activation. In embryonic mouse cortical neurons using glucose as only fuel, activation by NMDA elicits a strong workload (ATP demand)-dependent on Na and Ca entry, and stimulates glucose uptake, glycolysis, pyruvate and lactate production, and oxidative phosphorylation (OXPHOS) in a Ca-dependent way. We find that Ca upregulation of glycolysis, pyruvate levels, and respiration, but not glucose uptake, all depend on Aralar/AGC1/Slc25a12, the mitochondrial aspartate-glutamate carrier, component of the malate-aspartate shuttle (MAS).

View Article and Find Full Text PDF

AGC1/Aralar/Slc25a12 is the mitochondrial carrier of aspartate-glutamate, the regulatory component of the NADH malate-aspartate shuttle (MAS) that transfers cytosolic redox power to neuronal mitochondria. The deficiency in AGC1/Aralar leads to the human rare disease named "early infantile epileptic encephalopathy 39" (EIEE 39, OMIM # 612949) characterized by epilepsy, hypotonia, arrested psychomotor neurodevelopment, hypo myelination and a drastic drop in brain aspartate (Asp) and -acetylaspartate (NAA). Current evidence suggest that neurons are the main brain cell type expressing Aralar.

View Article and Find Full Text PDF

Charcot-Marie-Tooth (CMT) disease is a neuropathy that lacks effective therapy. CMT patients show degeneration of peripheral nerves, leading to muscle weakness and loss of proprioception. Loss of mitochondrial oxidative phosphorylation proteins and enzymes of the antioxidant response accompany degeneration of nerves in skin biopsies of CMT patients.

View Article and Find Full Text PDF

The mitochondrial ATP synthase emerges as key hub of cellular functions controlling the production of ATP, cellular signaling, and fate. It is regulated by the ATPase inhibitory factor 1 (IF1), which is highly abundant in neurons. Herein, we ablated or overexpressed IF1 in mouse neurons to show that IF1 dose defines the fraction of active/inactive enzyme in vivo, thereby controlling mitochondrial function and the production of mitochondrial reactive oxygen species (mtROS).

View Article and Find Full Text PDF

The objective of this observational study was to evaluate the efficacy and safety of duloxetine in a cohort of 100 cancer survivors with chemotherapy-induced peripheral neurotoxicity (CIPN). CIPN was graded employing the TNSc and the NCI-CTCv4. The Patient Global Impression of Change (PGIC) scale measured the efficacy of duloxetine (1: no benefit; to 7: excellent response).

View Article and Find Full Text PDF

Aim: The description of rare malignant ovarian tumours and the most suitable treatments. Alternative therapies different from intravenous chemotherapy are also explained.

Methods: Literature review and ongoing trial information have been used to elaborate this guide.

View Article and Find Full Text PDF

Aralar/AGC1/Slc25a12, the mitochondrial aspartate-glutamate carrier expressed in neurons, is the regulatory component of the NADH malate-aspartate shuttle. AGC1 deficiency is a neuropediatric rare disease characterized by hypomyelination, hypotonia, developmental arrest, and epilepsy. We have investigated whether β-hydroxybutyrate (βOHB), the main ketone body (KB) produced in ketogenic diet (KD), is neuroprotective in -knock-out (KO) neurons and mice.

View Article and Find Full Text PDF

The elevated energy demands in the brain are fulfilled mainly by glucose catabolism. In highly polarized neurons, about 10-50% of mitochondria are transported along microtubules using mitochondrial-born ATP to locations with high energy requirements. In this report, we have investigated the impact of Aralar deficiency on mitochondrial transport in cultured cortical neurons.

View Article and Find Full Text PDF

Introduction: The PENELOPE trial evaluated pertuzumab added to chemotherapy for biomarker-selected platinum-resistant ovarian cancer. As previously reported, pertuzumab did not statistically significantly improve progression-free survival (primary end point: HR 0.74, 95% CI 0.

View Article and Find Full Text PDF

The brain uses mainly glucose as fuel with an index of glucose to oxygen utilization close to 6, the maximal index if all glucose was completely oxidized. However, this high oxidative index, contrasts with the metabolic traits of the major cell types in the brain studied in culture, neurons and astrocytes, including the selective use of the malate-aspartate shuttle (MAS) in neurons and the glycerol-phosphate shuttle in astrocytes. Metabolic interactions among these cell types may partly explain the high oxidative index of the brain.

View Article and Find Full Text PDF

There have been no major improvements in the overall survival of ovarian cancer patients in recent decades. Even though more accurate surgery and more effective treatments are available, the mortality rate remains high. Given the differences in origin and the heterogeneity of these tumors, research to elucidate the signaling pathways involved is required.

View Article and Find Full Text PDF

ARALAR/AGC1 (aspartate-glutamate mitochondrial carrier 1) is an important component of the NADH malate-aspartate shuttle (MAS). AGC1-deficiency is a rare disease causing global cerebral hypomyelination, developmental arrest, hypotonia, and epilepsy (OMIM ID #612949); the aralar-KO mouse recapitulates the major findings in humans. This study was aimed at understanding the impact of ARALAR-deficiency in brain lactate levels as a biomarker.

View Article and Find Full Text PDF

Unlabelled: ARALAR/AGC1/Slc25a12, the aspartate-glutamate carrier from brain mitochondria, is the regulatory step in the malate-aspartate NADH shuttle, MAS. MAS is used to oxidize cytosolic NADH in mitochondria, a process required to maintain oxidative glucose utilization. The role of ARALAR was analyzed in two paradigms of glutamate-induced excitotoxicity in cortical neurons: glucose deprivation and acute glutamate stimulation.

View Article and Find Full Text PDF

Glutamate elicits Ca(2+) signals and workloads that regulate neuronal fate both in physiological and pathological circumstances. Oxidative phosphorylation is required in order to respond to the metabolic challenge caused by glutamate. In response to physiological glutamate signals, cytosolic Ca(2+) activates respiration by stimulation of the NADH malate-aspartate shuttle through Ca(2+)-binding to the mitochondrial aspartate/glutamate carrier (Aralar/AGC1/Slc25a12), and by stimulation of adenine nucleotide uptake through Ca(2+) binding to the mitochondrial ATP-Mg/Pi carrier (SCaMC-3/Slc25a23).

View Article and Find Full Text PDF

Mitochondrial function is regulated by calcium. In addition to the long known effects of matrix Ca(2+), regulation of metabolite transport by extramitochondrial Ca(2+) represents an alternative Ca(2+)-dependent mechanism to regulate mitochondrial function. The Ca(2+) regulated mitochondrial transporters (CaMCs) are well suited for that role, as they contain long N-terminal extensions harboring EF-hand Ca(2+) binding domains facing the intermembrane space.

View Article and Find Full Text PDF

Purpose: Volasertib is a potent and selective cell-cycle kinase inhibitor that induces mitotic arrest and apoptosis by targeting Polo-like kinase. This phase II trial evaluated volasertib or single-agent chemotherapy in patients with platinum-resistant or -refractory ovarian cancer who experienced failure after treatment with two or three therapy lines.

Patients And Methods: Patients were randomly assigned to receive either volasertib 300 mg by intravenous infusion every 3 weeks or an investigator's choice of single-agent, nonplatinum, cytotoxic chemotherapy.

View Article and Find Full Text PDF

Glutamate excitotoxicity is caused by sustained activation of neuronal NMDA receptors causing a large Ca(2+) and Na(+) influx, activation of poly(ADP ribose) polymerase-1 (PARP-1), and delayed Ca(2+) deregulation. Mitochondria undergo early changes in membrane potential during excitotoxicity, but their precise role in these events is still controversial. Using primary cortical neurons derived from mice, we show that NMDA exposure results in a rapid fall in mitochondrial ATP in neurons deficient in SCaMC-3/Slc25a23, a Ca(2+)-regulated mitochondrial ATP-Mg/Pi carrier.

View Article and Find Full Text PDF