Background: Identifying species, particularly small metazoans, remains a daunting challenge and the phylum Nematoda is no exception. Typically, nematode species are differentiated based on morphometry and the presence or absence of certain characters. However, recent advances in artificial intelligence, particularly machine learning (ML) algorithms, offer promising solutions for automating species identification, mostly in taxonomically complex groups.
View Article and Find Full Text PDFCyatholaimidae is a common and diverse family of mainly marine nematodes, potentially, with a large number of species to be discovered. The taxonomy of the group is marked by a lack of information about the evolutionary history of the characters and of detailed descriptions of morphological structures that may be taxonomically relevant. Two new species of the family are described from a sublittoral region in Southeastern Brazil, emphasizing the importance of the distribution and morphology of pore complex and pore-like structures present on the cuticle.
View Article and Find Full Text PDFChromadoridae is a widespread family of mostly free-living marine nematodes. This systematic review provides for each genus: a historical background, an updated diagnosis and a list of species. Our review recognizes 37 valid genera, 395 valid species, 57 descriptions without enough morphological information for accurate identification (species inquirenda) and 10 species incerta sedis.
View Article and Find Full Text PDFSequestration of chemical defenses from host plants is a strategy widely used by herbivorous insects to avoid predation. Larvae of the arctiine moth Utetheisa ornatrix feeding on unripe seeds and leaves of many species of Crotalaria (Leguminosae) sequester N-oxides of pyrrolizidine alkaloids (PAs) from these host plants, and transfer them to adults through the pupal stage. PAs confer protection against predation on all life stages of U.
View Article and Find Full Text PDF