The antiprotozoal activity of some indazole-derived amines (2, 3, 5-8) as well as that of some simple structurally related 3-alkoxy-1-alkyl-5-nitroindazoles (1, 4) against promastigote and amastigote forms of Leishmania infantum and Leishmania braziliensis is reported. In some cases, these compounds showed in vitro activities against the different morphological forms of Leishmania similar to or higher than those of the reference drug glucantime; this fact, along with low unspecific cytotoxicities against macrophages shown by some of them, led to good selectivity indexes (SI). The high efficiency of some 5-nitroindazoles against the mentioned protozoa was confirmed by further in vitro studies on infection rates.
View Article and Find Full Text PDFThe synthesis and antiprotozoal activity of some 3-alkoxy-1-alkyl- (1, 4) and 3-alkoxy-1-(ω-aminoalkyl)-5-nitroindazoles (2, 3, 5-8) against different morphological forms of Trypanosoma cruzi are reported. These compounds were prepared using simple alkylation reactions and, usually, taking advantage of the reactivity of some indazole-derived betaines previously studied by us. Most indazole derivatives showed in vitro activities similar or higher than those of the reference drug benznidazole; this fact, along with low unspecific cytotoxicities against Vero cells shown by some of them, led to very good selectivity indexes (SI).
View Article and Find Full Text PDFElectrochemical discrimination between dopamine and psychotropic drugs which have in common a skeletal structure of phenethylamine, can be obtained using acyclic receptors L(1) and L(2), containing two terminal 3-alkoxy-5-nitroindazole rings. Upon attachment to graphite electrodes, L(1) and L(2) exhibit a well-defined, essentially reversible solid state electrochemistry in contact with aqueous media, based on electrolyte-assisted reduction processes involving successive cation and anion insertion/binding. As a result, a distinctive, essentially Nernstian electrochemical response is obtained for phenethylammonium ions of methamphetamine (METH), p-methoxyamphetamine (PMA), amphetamine (AMPH), mescaline (MES), homoveratrylamine (HOM), phenethylamine (PEA) and dopamine (DA) in aqueous media.
View Article and Find Full Text PDF