Haliclona tubifera, marine sponge species abundant in Brazilian coastline, presents only a few papers published in the literature. Recently, we have reported the isolation of two modified C18 sphingoid bases: (2R,3R,6R,7Z)-2-aminooctadec-7-ene-1,3, 6-triol and and (2R,3R,6R)-2-aminooctadec-1,3,6-triol. In order to continue our research, in this work aimed at the biological investigation of fractions that led to the isolation of these compounds.
View Article and Find Full Text PDFObjectives: Marine sponges are among the most promising sources of chemically diversified fatty acids (FAs). In addition, several studies have shown the effect of polyunsaturated FAs on cancer therapy. This research carried out a biological and chemical evaluation of the sponge Scopalina ruetzleri collected on the South Brazilian coastline.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
April 2012
Lectin II from the marine sponge Axinella corrugata (ACL-II) was purified by affinity chromatography on rabbit erythrocytic stroma incorporated into a polyacrylamide gel, followed by gel filtration on Ultrogel AcA 44 column. Purified ACL-II is a lectin with an Mr of 80 kDa and 78 kDa, estimated by SDS-PAGE and by FPLC on Superose 12 HR column, respectively. ACL-II mainly agglutinates native rabbit erythrocytes and this hemagglutinating activity is independent of Ca(2+), Mg(2+) and Mn(2+), but is inhibited by d-galactose, chitin and N-acetyl derivatives, with the exception of GalNAc.
View Article and Find Full Text PDFOver the last few years, samples from the marine environment have been screened for a variety of compounds with different biological activities. Among all marine organisms, sponges represent one of the most promising sources of leads in the research of new cancer drugs. However, there are few reports on screening Brazilian marine sponges for biological activities.
View Article and Find Full Text PDFThe N-acetyl amino-carbohydrate specific lectin (ACL-I) was previously identified and purified by us from the marine sponge Axinella corrugata (phylum Porifera, class Demospongiae). The distribution of the specific lectin within the tissue of the sponge was studied by bright-field optical microscopy immunohistochemistry in order to better understand its physiological role in the sponge. Polyclonal antibodies were raised against purified ACL-I in mice and tested by Western blot technique.
View Article and Find Full Text PDFWe have studied the apoptotic pathway activated in response to marine sponge extracts of Polymastia janeirensis. The effect on intracellular ROS production was also examined. Exposure of U138MG glioma cell line to doses higher than 5 microg/mL has decreased glioma cell viability, with an IC(50) <15 microg/mL for both aqueous and organic extracts.
View Article and Find Full Text PDFMarine sponges have been prominently featured in the area of cancer research. Here, we examined the anti-proliferative effects of crude extracts (aqueous and organic) of the Brazilian marine sponge Polymastia janeirensis in the U138MG human glioma cell line. Moreover, we examined the effects of extracts on selective cytotoxicity in the glioma cells in comparison with a normal cell culture.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
July 2008
The lectin from the marine sponge Axinella corrugata (ACL-I) was purified by affinity chromatography on rabbit erythrocytic stroma incorporated into a polyacrylamide gel followed by gel filtration on Ultrogel AcA 44 column. Purified ACL-I is a hexameric glycoprotein with a Mr of 82.3 kDa estimated by SDS-PAGE and 78.
View Article and Find Full Text PDFThis paper describes the in vitro antiviral evaluation of 27 different marine sponges (Porifera) collected off Brazilian coastline in the search for novel drug leads. With these sponges aqueous and organic extracts were prepared and tested for anti-herpetic (HSV-1, KOS strain), anti-adenovirus (human AdV serotype 5) and anti-rotavirus (simian RV SA11) activities. The evaluation of the cytotoxicity and potential antiviral activity of these extracts were performed by using MTT assay.
View Article and Find Full Text PDF