We identified an AMOTL1 variant in a patient that adds evidence supporting the clinical and molecular overlap between AMOTL1-related disorders and other syndromes affecting craniofacial, cardiac, and hepatic development. As more cases are identified, we propose naming this entity as AMOTL1-associated multiple congenital anomalies or craniofaciocardiohepatic syndrome (CFCHS).
View Article and Find Full Text PDFJ Hum Genet
May 2024
Diagnosis of neuromuscular diseases (NMD) can be challenging because of the heterogeneity of this group of diseases. This review aimed to describe the diagnostic yield of whole exome sequencing (WES) for pediatric-onset neuromuscular disease diagnosis, as well as other benefits of this approach in patient management since WES can contribute to appropriate treatment selection in NMD patients. WES increases the possibility of reaching a conclusive genetic diagnosis when other technologies have failed and even exploring new genes not previously associated with a specific NMD.
View Article and Find Full Text PDFBrain development is critically dependent on the timely supply of thyroid hormones. The thyroid hormone transporters are central to the action of thyroid hormones in the brain, facilitating their passage through the blood-brain barrier. Mutations of the monocarboxylate transporter 8 (MCT8) cause the Allan-Herndon-Dudley syndrome, with altered thyroid hormone concentrations in the blood and profound neurological impairment and intellectual deficit.
View Article and Find Full Text PDFCIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country.
View Article and Find Full Text PDFThyroid hormones are crucial for brain development, acting through the thyroid hormone nuclear receptors (TR)α1 and β to control gene expression. Triiodothyronine (T3), the receptor-ligand, is transported into the brain from the blood by the monocarboxylate transporter 8 (MCT8). Another source of brain T3 is from the local deiodination of thyroxine (T4) by type 2 deiodinase (DIO2).
View Article and Find Full Text PDFSchuurs-Hoeijmakers syndrome (SHMS) or Neurodevelopmental disorder is a rare disorder characterized by intellectual disability, abnormal craniofacial features and congenital malformations. SHMS is an autosomal dominant hereditary disease caused by pathogenic variants in the gene. PACS1 is a trans-Golgi-membrane traffic regulator that directs protein cargo and several viral envelope proteins.
View Article and Find Full Text PDFThe monocarboxylate transporter 8 (Mct8) protein is a primary thyroxine (T4) and triiodothyronine (T3) (thyroid hormone [TH]) transporter. Mutations of the MCT8-encoding, gene alter thyroid function and TH metabolism and severely impair neurodevelopment (Allan-Herndon-Dudley syndrome [AHDS]). Mct8-deficient mice manifest thyroid alterations but lack neurological signs.
View Article and Find Full Text PDFThe knowledge of the genetic variability of the local population is of utmost importance in personalized medicine and has been revealed as a critical factor for the discovery of new disease variants. Here, we present the Collaborative Spanish Variability Server (CSVS), which currently contains more than 2000 genomes and exomes of unrelated Spanish individuals. This database has been generated in a collaborative crowdsourcing effort collecting sequencing data produced by local genomic projects and for other purposes.
View Article and Find Full Text PDFMethods Mol Biol
February 2019
The actions of thyroid hormones on brain development and function are due primarily to regulation of gene expression. Identification of direct transcriptional responses requires cell culture approaches given the difficulty of in vivo studies. Here, we describe the use of primary cells in culture obtained from embryonic mouse cerebral cortex, to identify the set of genes regulated directly and indirectly by T3 using RNA-Seq.
View Article and Find Full Text PDFAstrocytes mediate the action of thyroid hormone in the brain on other neural cells through the production of the active hormone triiodothyronine (T3) from its precursor thyroxine. T3 has also many effects on the astrocytes in vivo and in culture, but whether these actions are directly mediated by transcriptional regulation is not clear. In this work, we have analyzed the genomic response to T3 of cultured astrocytes isolated from the postnatal mouse cerebral cortex using RNA sequencing.
View Article and Find Full Text PDFBackground: The possibility that the intrinsic genomic activity of thyroxine (T4) is of physiological relevance has been frequently hypothesized. It might explain gene expression patterns in the brain found in type 2-deiodinase (Dio2)-deficient mice. These mice display normal expression of most thyroid hormone-dependent genes, despite decreased brain triiodothyronine (T3).
View Article and Find Full Text PDFMice deficient in the type 3 deiodinase (D3KO mice) manifest impaired clearance of thyroid hormone (TH), leading to elevated levels of TH action during development. This alteration causes reduced neonatal viability, growth retardation, and central hypothyroidism. Here we examined how these phenotypes are affected by a deficiency in the monocarboxylate transporter 8 (MCT8), which is a major contributor to the transport of the active thyroid hormone, T3, into the cell.
View Article and Find Full Text PDFBackground: Monocarboxylate transporter 8 (MCT8) is a thyroid hormone-specific cell membrane transporter. Mutations in the MCT8 gene lead to profound psychomotor retardation and abnormal thyroid hormone serum levels with low thyroxine (T4) and high triiodothyronine (T3). Currently, therapeutic options for patients are limited.
View Article and Find Full Text PDFThyroid hormones, thyroxine, and triiodothyronine (T3) are crucial for cerebral cortex development acting through regulation of gene expression. To define the transcriptional program under T3 regulation, we have performed RNA-Seq of T3-treated and untreated primary mouse cerebrocortical cells. The expression of 1145 genes or 7.
View Article and Find Full Text PDFNat Rev Endocrinol
September 2015
The cellular influx and efflux of thyroid hormones are facilitated by transmembrane protein transporters. Of these transporters, monocarboxylate transporter 8 (MCT8) is the only one specific for the transport of thyroid hormones and some of their derivatives. Mutations in SLC16A2, the gene that encodes MCT8, lead to an X-linked syndrome with severe neurological impairment and altered concentrations of thyroid hormones.
View Article and Find Full Text PDFSporadic colorectal cancer (CRC) insurgence and progression depend on the activation of Wnt/β-catenin signaling. Dickkopf (DKK)-1 is an extracellular inhibitor of Wnt/β-catenin signaling that also has undefined β-catenin-independent actions. Here we report for the first time that a proportion of DKK-1 locates within the nucleus of healthy small intestine and colon mucosa, and of CRC cells at specific chromatin sites of active transcription.
View Article and Find Full Text PDFBackground: Thyroid hormone is crucial in the development of different organs, particularly the brain. MCT8 is a specific transporter of triiodothyronine (T3) hormone and MCT8 gene mutations cause a rare X-linked disorder named MCT8 deficiency, also known as Allan-Herndon-Dudley syndrome, characterized by psychomotor retardation and hypotonia. Typically, elevation of T3 and delayed myelination in cerebral magnetic resonance imaging are found.
View Article and Find Full Text PDFThyroid hormone (TH) action is exerted mainly through regulation of gene expression by binding of T3 to the nuclear receptors. T4 plays an important role as a source of intracellular T3 in the central nervous system via the action of the type 2 deiodinase (D2), expressed in the astrocytes. A model of T3 availability to neural cells has been proposed and validated.
View Article and Find Full Text PDFThyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2) cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development.
View Article and Find Full Text PDFThe effects of thyroid hormone on brain development and function are largely mediated by the binding of 3,5,3'-triiodo-L-thyronine (T3) to its nuclear receptors (TR) to regulate positively or negatively gene expression. We have analyzed by quantitative polymerase chain reaction the effect of T3 on primary cultured cells from the embryonic mouse cerebral cortex, on the expression of Hr, Klf9, Shh, Dio3, Aldh1a1, and Aldh1a3. In particular we focused on T3 receptor specificity, and on the crosstalk between T3, retinoic acid and dexamethasone.
View Article and Find Full Text PDFMutations of the monocarboxylate transporter 8 (MCT8) cause a severe X-linked intellectual deficit and neurological impairment. MCT8 is a specific thyroid hormone (T4 and T3) transporter and the patients also present unusual abnormalities in the serum profile of thyroid hormone concentrations due to altered secretion and metabolism of T4 and T3. Given the role of thyroid hormones in brain development, it is thought that the neurological impairment is due to restricted transport of thyroid hormones to the target neurons.
View Article and Find Full Text PDF