Antibiotic resistance is now a first-order health problem, which makes the development of new families of antimicrobials imperative. These compounds should ideally be inexpensive, readily available, highly active, and non-toxic. Here, we present the results of our investigation regarding the antimicrobial activity of a series of natural and synthetic polyamines with different architectures (linear, tripodal, and macrocyclic) and their derivatives with the oxygen-containing aromatic functional groups 1,3-benzodioxol, ortho/para phenol, or 2,3-dihydrobenzofuran.
View Article and Find Full Text PDFAutophagy is a fundamental catabolic process of cellular survival. The role of autophagy in cancer is highly complex: in the early stages of neoplastic transformation, it can act as a tumor suppressor avoiding the accumulation of proteins, damaged organelles, and reactive oxygen species (ROS), while during the advanced stages of cancer, autophagy is exploited by cancer cells to survive under starvation. 6-(Methylsulfonyl) hexyl isothiocyanate (6-MITC) is the most interesting compound in the rizhome.
View Article and Find Full Text PDFThe detection of reactive oxygen species (ROS) and the analysis of oxidative stress are frequent applications of functional flow cytometry. Identifying and quantifying the ROS species generated during oxidative stress are crucial steps for the investigation of molecular mechanisms underlying stress responses. Currently, there is a wide availability of fluorogenic substrates for such purposes, but limitations in their specificity and sensitivity may affect the accuracy of the analysis.
View Article and Find Full Text PDF(1) Background: Sepsis is a life-threatening condition caused by an abnormal host response to infection that produces altered physiological responses causing tissue damage and can result in organ dysfunction and, in some cases, death. Although sepsis is characterized by a malfunction of the immune system leading to an altered immune response and immunosuppression, the high complexity of the pathophysiology of sepsis requires further investigation to characterize the immune response in sepsis and septic shock. (2) Methods: This study analyzes the immune-related responses occurring during the early stages of sepsis by comparing the amounts of cytokines, immune modulators and other endothelial mediators of a control group and three types of severe patients: critically ill non-septic patients, septic and septic shock patients.
View Article and Find Full Text PDFBackground: In recent years, there has been great interest in developing molecular adjuvants based on antisense oligonucleotides (ASOs) targeting immunosuppressor pathways with inhibitory effects on regulatory T cells (Tregs) to improve immunogenicity and vaccine efficacy. We aim to evaluate the immunostimulating effect of 2'OMe phosphorothioated Foxp3-targeted ASO in an antifungal adjuvanted recombinant vaccine.
Methods: The uptake kinetics of Foxp3 ASO, its cytotoxicity and its ability to deplete Tregs were evaluated in murine splenocytes in vitro.
These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells.
View Article and Find Full Text PDF