ACS Appl Mater Interfaces
December 2024
Microwave-assisted oxide reduction has emerged as a promising method to electrify chemical looping processes for renewable hydrogen production. Moreover, these thermochemical cycles can be used for thermochemical air separation, electrifying the O generation by applying microwaves in the reduction step. This approach offers an alternative to conventional cryogenic air separation, producing pure streams of O and N.
View Article and Find Full Text PDFExsolution has emerged as a promising method for generating metallic nanoparticles, whose robustness and stability outperform those of more conventional deposition methods, such as impregnation. In general, exsolution involves the migration of transition metal cations, typically perovskites, under reducing conditions, leading to the nucleation of well-anchored metallic nanoparticles on the oxide surface with particular properties. There is growing interest in exploring alternative methods for exsolution that do not rely on high-temperature reduction via hydrogen.
View Article and Find Full Text PDFThe application of microwave technology for efficient and environmentally friendly synthesis of ceramic pigments is a successful and rapidly evolving area of research. However, a clear understanding of the reactions and their relationship with the material absorbance has not been fully achieved. The present study introduces an in situ permittivity characterization technique, which serves as an innovative and precise tool for assessing the microwave synthesis of ceramic pigments.
View Article and Find Full Text PDFMineral transformations of the gypsum-anhydrite system under microwave heating have been studied using in situ dielectric thermal analysis (MW-DETA) and Raman spectroscopy simultaneously. The dielectric properties of samples that were measured under microwave heating provided thorough information about the dynamics of the gypsum-anhydrite system transformations and its significance from the mineralogical point of view. In particular, the MW-DETA technique revealed a new intermediate phase with a γ-anhydrite structure.
View Article and Find Full Text PDFMicrowave-assisted processes have recognized advantages over more conventional heating techniques. However, the effects on the materials' microstructure are still a matter of study, due to the complexity of the interaction between microwaves and matter, especially at high temperatures. Recently developed advanced microwave instrumentation allows the study of high temperature microwave heating processes in a way that was not possible before.
View Article and Find Full Text PDFThe palm oil mills extraction process requires the separation of oil-water-sludge emulsions. For this purpose, the use of sedimentation and/or centrifugation techniques have been required until now. However, significant losses persist in different process flows and new methods are needed to further decrease them, such as methods based on electromagnetic waves application.
View Article and Find Full Text PDFWaveguide structures are very popular in the microwave power industry due to their power handling capabilities. Modal expansion of the waveguide fields and application of the circuit theory allow for the division of a complex device into several simpler sections which can be analyzed separately with the best suited method. The modal techniques can be divided into two groups--those which analyze junctions or discontinuities and those which examine propagation characteristics.
View Article and Find Full Text PDFIntermodal dispersion between the supermodes of a directional coupler may induce undesirable pulse breakup in a sufficiently large device. When this happens the device will no longer exchange power between its arms, and the extinction ratio is completely canceled. It is shown that, by carefully designing the coupling area of the directional coupler, one may compensate for intermodal dispersion.
View Article and Find Full Text PDF