Publications by authors named "Beatriz G Del Rio"

In this machine learning (ML) study, we delved into the unique properties of liquid lanthanum and the LiPb alloy, revealing some unexpected features and also firmly establishing some of the debated characteristics. Leveraging interatomic potentials derived from ab initio calculations, our investigation achieved a level of precision comparable to first-principles methods while at the same time entering the hydrodynamic regime. We compared the structure factors and pair distribution functions to experimental data and unearthed distinctive collective excitations with intriguing features.

View Article and Find Full Text PDF

The disparity between the masses of the two components in a binary liquid system can lead to the appearance of a peculiar phenomenon named "fast sound," which was identified for the first time in Li4Pb several decades ago and later observed in other Li based alloys. However, the exact characteristics and nature of this phenomenon and the reasons behind its appearance have not totally been identified yet. In this work, we analyze the longitudinal and transverse current correlation functions of UO2, Li4Pb, and Li0.

View Article and Find Full Text PDF

Vapor-phase infiltration, a postpolymerization modification process, has demonstrated the ability to create organic-inorganic hybrid membranes with excellent stability in organic solvents while maintaining critical membrane properties of high permeability and selectivity. However, the chemical reaction pathways that occur during VPI and their implications on the hybrid membrane stability are poorly understood. This paper combines quartz crystal microbalance gravimetry (QCM) and chemical characterization with first-principles simulations at the atomic scale to study each processing step in the infiltration of polymer of intrinsic microporosity 1 (PIM-1) with trimethylaluminum (TMA) and its co-reaction with water vapor.

View Article and Find Full Text PDF

Computations based on density functional theory (DFT) are transforming various aspects of materials research and discovery. However, the effort required to solve the central equation of DFT, namely the Kohn-Sham equation, which remains a major obstacle for studying large systems with hundreds of atoms in a practical amount of time with routine computational resources. Here, we propose a deep learning architecture that systematically learns the input-output behavior of the Kohn-Sham equation and predicts the electronic density of states, a primary output of DFT calculations, with unprecedented speed and chemical accuracy.

View Article and Find Full Text PDF

Uranium compounds are used as fissile materials in nuclear reactors. In present day reactors the most used nuclear fuel is uranium dioxide, but in generation-IV reactors other compounds are also being considered, such as uranium carbide and uranium mononitride. Upon possible accidents where the coolant would not circulate or be lost the core of the reactor would reach very high temperatures, and therefore it is essential to understand the behaviour of the nuclear fuel under such conditions for proper risk assessment.

View Article and Find Full Text PDF

The static and dynamic properties of several bulk liquid 3d transition metals at thermodynamic conditions near their respective melting points have been evaluated by using ab initio molecular dynamics simulations. The calculated static structure factors show an asymmetric second peak followed by a more or less marked shoulder which points to a sizeable amount of icosahedral local order. Special attention is devoted to the analysis of the longitudinal and transverse current spectral functions and the corresponding dispersion of collective excitations.

View Article and Find Full Text PDF

The appearance of a second excitation mode in the longitudinal and transverse collective dynamics of a series of liquid metals has been observed recently, either by inelastic X-ray scattering (IXS) or by first-principles molecular dynamics (FPMD). The phenomenon's origin is still uncertain, although some theories have been used with relative success to reproduce the FPMD results as a means to find an explanation for it (e.g.

View Article and Find Full Text PDF

The accuracy of local pseudopotentials (LPSs) is one of two major determinants of the fidelity of orbital-free density functional theory (OFDFT) simulations. We present a global optimization strategy for LPSs that enables OFDFT to reproduce solid and liquid properties obtained from Kohn-Sham DFT. Our optimization strategy can fit arbitrary properties from both solid and liquid phases, so the resulting globally optimized local pseudopotentials (goLPSs) can be used in solid and/or liquid-phase simulations depending on the fitting process.

View Article and Find Full Text PDF

We have performed a comprehensive study of the properties of liquid Be, Ca and Ba, through the use of orbital free ab initio simulations. To this end we have developed a force-matching method to construct the necessary local pseudopotentials from standard ab initio calculations. The structural magnitudes are analyzed, including the average and local structures and the dynamic properties are studied.

View Article and Find Full Text PDF