Survival in high-risk neuroblastoma (HR-NB) patients remains poor despite multimodal treatment. We aimed to identify HR-NB patients with worse outcomes by analyzing the genomic instability derived from segmental chromosomal aberrations. We calculated 3 genomic instability indexes for primary tumor SNP array profiles from 127 HR-NB patients: (1) Copy number aberration burden (%gains+%losses), (2) copy number load (CNL) (%gains-%losses) and (3) net genomic load (NGL) (%gains-%losses).
View Article and Find Full Text PDFBackground: Increased tissue stiffness is a common feature of malignant solid tumors, often associated with metastasis and poor patient outcomes. Vitronectin, as an extracellular matrix anchorage glycoprotein related to a stiff matrix, is present in a particularly increased quantity and specific distribution in high-risk neuroblastoma. Furthermore, as cells can sense and transform the proprieties of the extracellular matrix into chemical signals through mechanotransduction, genotypic changes related to stiffness are possible.
View Article and Find Full Text PDF