Annu Int Conf IEEE Eng Med Biol Soc
July 2023
Cardiorespiratory interaction is related to the heart rate variability (HRV) synchronized with respiration. These metrics help to comprehend the autonomic nervous system (ANS) functionality in cardiovascular mechanisms. In this work, we aim to study the HRV in healthy subjects aged 18-24 years during the breathing techniques based on deep breaths followed by apnoeas, developed by Wim Hof (WHM).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Accurate monitoring of respiratory activity can lead to early identification and treatment of possible respiratory failure. However, spontaneous breathing can vary considerably. To quantify this variability, this study aimed at comparing the breathing pattern characteristics obtained from several recording sensors during different breathing types.
View Article and Find Full Text PDFStudy Objectives: We aimed to characterize the cerebral hemodynamic response to obstructive sleep apnea/hypopnea events, and evaluate their association to polysomnographic parameters. The characterization of the cerebral hemodynamics in obstructive sleep apnea (OSA) may add complementary information to further the understanding of the severity of the syndrome beyond the conventional polysomnography.
Methods: Severe OSA patients were studied during night sleep while monitored by polysomnography.
Annu Int Conf IEEE Eng Med Biol Soc
July 2022
Cardiorespiratory Phase Synchronization (CRPS) is the manifestation of the non-linear coupling between the cardiac and the respiratory systems, different to the Respiratory Sinus Arrythmia (RSA). This takes place when the heartbeats occur at the same relative phase of the breathing, during a succession of respiratory cycles. In this study, we investigated the CRPS in 45 elderly patients admitted to the semi-critical unit of a hospital.
View Article and Find Full Text PDFObstructive apnea causes periodic changes in cerebral and systemic hemodynamics, which may contribute to the increased risk of cerebrovascular disease of patients with obstructive sleep apnea (OSA) syndrome. The improved understanding of the consequences of an apneic event on the brain perfusion may improve our knowledge of these consequences and then allow for the development of preventive strategies. Our aim was to characterize the typical microvascular, cortical cerebral blood flow (CBF) changes in an OSA population during an apneic event.
View Article and Find Full Text PDF