This study analyzed the chemical composition of essential oil from Puebla, México, assessed its antioxidant activity, and evaluated in silico protein-compound interactions related to central nervous system (CNS) physiology. GC-MS analysis identified myrcene (8.76%), Z-geranial (27.
View Article and Find Full Text PDFAzospirillum baldaniorum Sp245, a plant growth-promoting rhizobacterium, can form biofilms through a process controlled by the second messenger cyclic diguanylate monophosphate (c-di-GMP). A. baldaniorum has a variety of proteins potentially involved in controlling the turnover of c-di-GMP many of which are coupled to sensory domains that could be involved in establishing a mutualistic relationship with the host.
View Article and Find Full Text PDFis a plant growth-promoting rhizobacterium (PGPR) capable of fixing nitrogen, the synthesis of several phytohormones including indole-acetic acid, and induction of plant defenses against phytopathogens. To establish a successful and prolonged bacteria-plant interaction, can form biofilms, bacterial communities embedded in a self-made matrix formed by extracellular polymeric substances which provide favorable conditions for survival. A key modulator of biofilm formation is the second messenger bis-(3'-5')-cyclic-dimeric-GMP (c-di-GMP), which is synthesized by diguanylate cyclases (DGC) and degraded by specific phosphodiesterases.
View Article and Find Full Text PDFThe plant growth-promoting bacterium Azospirillum brasilense contains several genes encoding proteins involved in the biosynthesis and degradation of the second messenger cyclic-di-GMP, which may control key bacterial functions, such as biofilm formation and motility. Here, we analysed the function and expression of the cdgD gene, encoding a multidomain protein that includes GGDEF-EAL domains and CHASE and PAS domains. An insertional cdgD gene mutant was constructed, and analysis of biofilm and extracellular polymeric substance production, as well as the motility phenotype indicated that cdgD encoded a functional diguanylate protein.
View Article and Find Full Text PDFElucidation of biofilm structure formation in the plant growth-promoting rhizobacterium Azospirillum brasilense is necessary to gain a better understanding of the growth of cells within the extracellular matrix and its role in the colonization of plants of agronomic importance. We used immunofluorescence microscopy and confocal laser scanning microscopy to study spatio-temporal biofilm formation on an abiotic surface. Observations facilitated by fluorescence microscopy revealed the presence of polar flagellin, exopolysaccharides, outer major membrane protein (OmaA) and extracellular DNA in the Azospirillum biofilm matrix.
View Article and Find Full Text PDFAzospirillum brasilense is one of the most studied species of diverse agronomic plants worldwide. The benefits conferred to plants inoculated with Azospirillum have been primarily attributed to its capacity to fix atmospheric nitrogen and synthesize phytohormones, especially indole-3-acetic acid (IAA). The principal pathway for IAA synthesis involves the intermediate metabolite indole pyruvic acid.
View Article and Find Full Text PDFBackground: The cyclic-di-GMP (c-di-GMP) second messenger exemplifies a signaling system that regulates many bacterial behaviors of key importance; among them, c-di-GMP controls the transition between motile and sessile life-styles in bacteria. Cellular c-di-GMP levels in bacteria are regulated by the opposite enzymatic activities of diguanylate cyclases and phosphodiesterases, which are proteins that have GGDEF and EAL domains, respectively. Azospirillum is a genus of plant-growth-promoting bacteria, and members of this genus have beneficial effects in many agronomically and ecologically essential plants.
View Article and Find Full Text PDFIn bacteria, proteins containing GGDEF domains are involved in production of the second messenger c-di-GMP. Here we report that the cdgA gene encoding diguanylate cyclase A (CdgA) is involved in biofilm formation and exopolysaccharide (EPS) production in Azospirillum brasilense Sp7. Biofilm quantification using crystal violet staining revealed that inactivation of cdgA decreased biofilm formation.
View Article and Find Full Text PDFPlant growth-promoting bacteria of the genus Azospirillum are present in the rhizosphere and as endophytes of many crops. In this research we studied 40 Azospirillum strains isolated from different plants and geographic regions. They were first characterized by 16S rDNA restriction analysis, and their phylogenetic position was established by sequencing the genes 16S rDNA, ipdC, hisC1, and hisC2.
View Article and Find Full Text PDFBacterial biofilms are ubiquitous in nature, and their flexibility is derived in part from a complex extracellular matrix that can be made-to-order to cope with environmental demand. Although common developmental stages leading to biofilm formation have been described, an in-depth knowledge of genetic and signaling is required to understand biofilm formation. Bacteria detect changes in population density by quorum sensing and particular environmental conditions, using signals such as cyclic di-GMP or nitric oxide.
View Article and Find Full Text PDFGluconacetobacter diazotrophicus is a nitrogen-fixing bacterium and endophyte of sugarcane. We have cloned and sequenced the genes coding for the components of the iron ABC-type acquisition system of G. diazotrophicus.
View Article and Find Full Text PDFWe report, here, the characterization of a mutant strain of Azospirillum brasilense Sp7 impaired in surface motility and chemotactic response. Presence of flagella in the mutant strain was confirmed by western blot analysis, using antisera raised against the polar and lateral flagellins, and by electron microscopy. Genetic complementation and nucleotide sequencing led to the identification of a new gene, named chsA.
View Article and Find Full Text PDFO-Acetylserine (thiol)-lyase (cysteine synthase) was purified from Azospirillum brasilense Sp7. After hydrolysis of the purified protein, amino acid sequences of five peptides were obtained, which permitted the cloning and sequencing of the cysK gene. The deduced amino acid sequence of cysteine synthase exhibited homology with several putative proteins from Alpha- and Gammaproteobacteria.
View Article and Find Full Text PDFIn this work, we report the detection of aromatic amino acid aminotransferase (AAT) activity from cell-free crude extracts of nine strains of N(2)-fixing bacteria from three genera. Using tyrosine as substrate, AAT activity ranged in specific activity from 0.084 to 0.
View Article and Find Full Text PDFSome microorganisms found in the soil are able to produce substances which regulate plant growth. In this study, we show the presence of a substance associated with auxin activity, identified as indole-3-butyric acid (IBA), in Azospirillum brasilense UAP 154 growth medium. A.
View Article and Find Full Text PDF