Publications by authors named "Beatriz D Simoes"

In response to heightened environmental awareness, various industries, including the civil and automotive sector, are contemplating a shift towards the utilization of more sustainable materials. For adhesive bonding, this necessitates the exploration of materials derived from renewable sources, commonly denoted as bio-adhesives. This study focuses on a bio-adhesive L-joint, which is a commonly employed configuration in the automotive sector for creating bonded structural components with significant bending stiffness.

View Article and Find Full Text PDF

The adhesion of pressure-sensitive adhesives (PSAs) is a complex phenomenon that can be understood through the characterization of different properties, including viscoelastic, mechanical, and fracture properties. The aim of the present paper is to determine the viscoelastic behaviour of an acrylic PSA and place it in the viscoelastic window, as well as to determine the tensile strength of the material. Additionally, different numbers of stacked adhesive layers and two crosshead speeds were applied to characterize the tensile strength of the adhesive in the different conditions.

View Article and Find Full Text PDF

Adhesives are increasingly being employed in industrial applications as a replacement for traditional mechanical joining methods, since they enable improvements in the strength-to-weight ratio and lower the cost of the overall structures. This has led to a need for adhesive mechanical characterisation techniques that can provide the data needed to build advanced numerical models, allowing structural designers to expedite the adhesive selection process and grant precise optimisation of bonded connection performance. However, mechanically mapping the behaviour of an adhesive involves numerous different standards resulting in a complex network of various specimens, testing procedures and data reduction methods that concern techniques which are exceedingly complex, time-consuming, and expensive.

View Article and Find Full Text PDF

In the present paper, an exploratory study on the creep behavior of a pressure sensitive adhesive (PSA) is performed. After the determination of the quasi-static behavior of the adhesive for bulk specimens and single lap joints (SLJ), SLJs were subjected to creep tests at 80%, 60%, and 30% of their respective failure load. It was verified that the durability of the joints increases under static creep conditions as the load level decreases, with the second phase of the creep curve becoming more pronounced, where the strain rate is close to zero.

View Article and Find Full Text PDF

The use of carbon fibre reinforced polymer (CFRP) materials is increasing in many different industries, such as those operating in the aviation, marine, and automotive sectors. In these applications, composite parts are often joined with other composite or metallic parts, where adhesive bonding plays a key role. Unlike conventional joining methods, adhesive bonding does not add weight or require the drilling of holes, both of which are major sources of stress concentration.

View Article and Find Full Text PDF

The presence of residual stresses in composite materials can significantly affect material performance, especially when integrated in bonded joints. These stresses, often generated during the cure process, can cause cracking and distortion of the material, and are caused by differences in the coefficients of thermal expansion or cure shrinkage. In the current research, multimaterial adherends combining carbon-fibre-reinforced polymer (CFRP) and aluminium in a single-lap joint (SLJ) configuration are analysed, allowing us to understand the effect of the thermal residual stresses, developed during the curing process, in the overall performance of the joints.

View Article and Find Full Text PDF