Publications by authors named "Beatriz Aguirre-Lopez"

Sexual reproduction allows eukaryotic organisms to produce genetically diverse progeny. This process relies on meiosis, a reductional division that enables ploidy maintenance and genetic recombination. Meiotic differentiation also involves the renewal of cell functioning to promote offspring rejuvenation.

View Article and Find Full Text PDF

The γ-aminobutyric acid (GABA) shunt constitutes a conserved metabolic route generating nicotinamide adenine dinucleotide phosphate (NADPH) and regulating stress response in most organisms. Here we show that in the presence of GABA, produces glutamate and alanine through the irreversible action of Uga1 transaminase. Alanine induces expression of alanine transaminase () gene.

View Article and Find Full Text PDF

Divergence of paralogous pairs, resulting from gene duplication, plays an important role in the evolution of specialized or novel gene functions. Analysis of selected duplicated pairs has elucidated some of the mechanisms underlying the functional diversification of (. ) paralogous genes.

View Article and Find Full Text PDF

The cattle tick is one of the most important ectoparasites causing significant economic losses for the cattle industry. The major tool of control is reducing the number of ticks, applying acaricides in cattle. However, overuse has led to selection of resistant populations of to most of these products, some even to more than one active principle.

View Article and Find Full Text PDF

arose from an interspecies hybridization (allopolyploidiza-tion), followed by Whole Genome Duplication. Diversification analysis of Alt1/Alt2 indicated that while Alt1 is an alanine transaminase, Alt2 lost this activity, constituting an example in which one of the members of the gene pair lacks the apparent ancestral physiological role. This paper analyzes structural organization and pyridoxal phosphate (PLP) binding properties of Alt1 and Alt2 indicating functional diversification could have determined loss of Alt2 alanine transaminase activity and thus its role in alanine metabolism.

View Article and Find Full Text PDF

Rare arginine codons AGA and AGG affect the heterologous expression of proteins in . The tRNAs necessary for protein synthesis are scarce in strain BL21(DE3) pLysS and plentiful in strain BL21(DE3) CodonPlus -RIL. We evaluated in both bacterial strains the effect of these rare codons on the expression of triosephosphate isomerases from 7 different species, whose sequences had different dispositions of rare arginine codons.

View Article and Find Full Text PDF

Triosephosphate isomerase (TIM) is an essential Trypanosoma cruzi enzyme and one of the few validated drug targets for Chagas disease. The known inhibitors of this enzyme behave poorly or have low activity in the parasite. In this work, we used symmetrical diarylideneketones derived from structures with trypanosomicidal activity.

View Article and Find Full Text PDF

The current pharmacological Chagas disease treatments, using Nifurtimox or Benznidazole, show limited therapeutic results and are associated with potential side effects, like mutagenicity. Using random screening we have identified new chemotypes that were able to inhibit relevant targets of the Trypanosoma cruzi. We found 3H-[1,2]dithioles with the ability to inhibit Trypanosoma cruzi triosephosphate isomerase (TcTIM).

View Article and Find Full Text PDF

The neglected disease American trypanosomiasis is one of the major health problems in Latin America. Triosephosphate isomerase from Trypanosoma cruzi (TcTIM), the etiologic agent of this disease, has been proposed as a druggable target. Some bis-benzothiazoles have been described as irreversible inhibitors of this enzyme.

View Article and Find Full Text PDF

Context: Triosephosphate isomerase (TIM) is a ubiquitous enzyme that has been targeted for the discovery of new small molecular weight compounds used against Trypanosoma cruzi, the causative agent of Chagas disease. We have identified phenazine and 1,2,6-thiadiazine chemotypes as novel inhibitors of TIM from T. cruzi (TcTIM).

View Article and Find Full Text PDF

Context: Triosephosphate isomerase (TIM) is a ubiquitous enzyme that has been targeted for the discovery of small molecular weight compounds with potential use against Trypanosoma cruzi, the causative agent of Chagas disease. We have identified a new selective inhibitor chemotype of TIM from T. cruzi (TcTIM), 1,2,4-thiadiazol-5(4H)-one.

View Article and Find Full Text PDF

Triosephosphate isomerase from Trypanosoma cruzi (TcTIM), an enzyme in the glycolytic pathway that exhibits high catalytic rates of glyceraldehyde-3-phosphate- and dihydroxyacetone-phosphate-isomerization only in its dimeric form, was screened against an in-house chemical library containing nearly 230 compounds belonging to different chemotypes. After secondary screening, twenty-six compounds from eight different chemotypes were identified as screening positives. Four compounds displayed selectivity for TcTIM over TIM from Homo sapiens and, concomitantly, in vitro activity against T.

View Article and Find Full Text PDF

In the search of molecules that can serve as leads in the design of a new drug for the treatment of Chagas' disease, we found that some brevifolin carboxylate derivatives isolated from Geranium bellum Rose, inactivate triosephosphate isomerase from Trypanosoma cruzi (TcTIM) in a species-specific manner. After spectroscopic characterization, these compounds were identified as methylbrevifolin carboxylate (1), ethylbrevifolin carboxylate (2), butylbrevifolin carboxylate (3) and the methylated derivate methyl tri-O-methylbrevifolin carboxylate (4). The concentrations required to inactivate fifty percent the activity of TcTIM were 6.

View Article and Find Full Text PDF

Human triosephosphate isomerase deficiency is a rare autosomal disease that causes premature death of homozygous individuals. The most frequent mutation that leads to this illness is in position 104, which involves a conservative change of a Glu for Asp. Despite the extensive work that has been carried out on the E104D mutant enzyme in hemolysates and whole cells, the molecular basis of this disease is poorly understood.

View Article and Find Full Text PDF

Homodimeric triosephosphate isomerase (TIM) from Trypanosoma cruzi (TcTIM) and T. brucei (TbTIM) are markedly similar in amino acid sequence and three-dimensional structure. In their dimer interfaces, each monomer has a Cys15 that is surrounded by loop3 of the adjoining subunit.

View Article and Find Full Text PDF