Publications by authors named "Beatrix UEberheide"

Transcripts of the KRAS locus are alternatively spliced to generate two proteins, KRAS4A and KRAS4B, which differ in their membrane-targeting sequences. These splice variants have been conserved for more than 450 million years, suggesting non-overlapping functions driven by differential membrane association. Here, we use proximity labeling to map the differential interactomes of the KRAS splice variants.

View Article and Find Full Text PDF

Background: Bone regeneration following a fracture is dependent on multiple factors including skeletal stem cells (SSCs). Recruitment, proliferation, and differentiation of the SSCs is guided by the proteins and metabolites found within the fracture microenvironment. Understanding how intrinsic factors affect the fracture microenvironment has been a topic of ongoing investigation.

View Article and Find Full Text PDF

Sudden unexplained death in childhood (SUDC) is death of a child ≥ 12 months old that is unexplained after autopsy and detailed analyses. Among SUDC cases, ~ 30% have febrile seizure (FS) history, versus 2-5% in the general population. SUDC cases share features with sudden unexpected death in epilepsy (SUDEP) and sudden infant death syndrome (SIDS), in which brainstem autonomic dysfunction is implicated.

View Article and Find Full Text PDF
Article Synopsis
  • Hypoxic cancer cells often resist treatments and can lead to cancer recurrence, with PTP1B deficiency promoting breast cancer cell death under low oxygen conditions via RNF213 activation.
  • PTP1B and ABL1/2 interact to regulate RNF213 phosphorylation, promoting its role in degrading CYLD/SPATA2, which in turn activates NF-κB and the NLRP3 inflammasome, culminating in pyroptotic cell death.
  • The findings reveal a novel PTP1B-RNF213-CYLD-SPATA2 pathway that plays a critical role in inflammatory cell death in hypoxic tumors, with broader implications for diseases like Moyamoya, inflammation, and autoimmune disorders.
View Article and Find Full Text PDF

Ubiquitin-dependent proteolysis regulates diverse cellular functions with high substrate specificity, which hinges on the ability of ubiquitin E3 ligases to decode the targets' degradation signals, i.e., degrons.

View Article and Find Full Text PDF

Our genome is not made of naked DNA but a fiber (chromatin) composed of DNA and proteins packaged into our chromosomes. The basic building block of chromatin is the nucleosome, which has two copies of each of the proteins called histones (H2A, H2B, H3, and H4) wrapped by 146 base pairs of DNA. Regions of our genetic material are found between the more open (euchromatin) and more compact (heterochromatin) regions of the genome that can be variably accessible to the underlying genes.

View Article and Find Full Text PDF

Compartment-specific cellular membrane protein turnover is not well understood. We show that FBXO10, the interchangeable component of the cullin-RING-ligase 1 complex, undergoes lipid modification with geranylgeranyl isoprenoid at cysteine953, facilitating its dynamic trafficking to the outer mitochondrial membrane (OMM). FBXO10 polypeptide lacks a canonical mitochondrial targeting sequence (MTS); instead, its geranylgeranylation at C953 and interaction with two cytosolic factors, cytosolic factor-like δ subunit of type 6 phosphodiesterase (PDE6δ; a prenyl-group-binding protein) and heat shock protein 90 (HSP90; a chaperone), orchestrate specific OMM targeting of prenyl-FBXO10.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial fusion involves the merging of four bilayers into two, which is influenced by the outer-membrane protein SLC25A46 interacting with dynamin family GTPases Mfn1/2 and Opa1.
  • Researchers employed crosslinking mass spectrometry and AlphaFold 2 modeling to discover how SLC25A46 interacts specifically with Opa1 and Mfn2.
  • The study identifies key interaction interfaces that are crucial for maintaining mitochondrial structure and function.
View Article and Find Full Text PDF
Article Synopsis
  • Down syndrome (DS) is closely linked to Alzheimer's disease (AD) due to similar amyloid-β (Aβ) and Tau protein pathologies, prompting researchers to study the Aβ plaque proteins in three groups: DS, early-onset AD (EOAD), and late-onset AD (LOAD).
  • The study utilized advanced proteomics to analyze amyloid plaques and surrounding tissue from individuals across these cohorts, revealing various proteins that were differentially abundant in each group, with some proteins common to all.
  • Key biological processes and protein interactions related to immune response and lysosomal functions were identified, with DS showing a weaker correlation in non-plaque proteins when compared to EOAD and LOAD, highlighting distinct molecular profiles across the groups
View Article and Find Full Text PDF

The existing literature points towards the presence of robust mitochondrial mechanisms aimed at mitigating protein dyshomeostasis within the organelle. However, the precise molecular composition of these mechanisms remains unclear. Our data show that inorganic polyphosphate (polyP), a polymer well-conserved throughout evolution, is a component of these mechanisms.

View Article and Find Full Text PDF

Cerebral amyloid angiopathy (CAA) is characterized by amyloid beta (Aβ) deposition in cerebrovasculature. It is prevalent with aging and Alzheimer's disease (AD), associated with intracerebral hemorrhage, and contributes to cognitive deficits. To better understand molecular mechanisms, CAA(+) and CAA(-) vessels were microdissected from paraffin-embedded autopsy temporal cortex of age-matched Control (n = 10), mild cognitive impairment (MCI; n = 4), and sporadic AD (n = 6) cases, followed by label-free quantitative mass spectrometry.

View Article and Find Full Text PDF

The transcription factor BACH1 regulates heme homeostasis and oxidative stress responses and promotes cancer metastasis upon aberrant accumulation. Its stability is controlled by two F-box protein ubiquitin ligases, FBXO22 and FBXL17. Here we show that the homodimeric BTB domain of BACH1 functions as a previously undescribed quaternary structure degron, which is deciphered by the two F-box proteins via distinct mechanisms.

View Article and Find Full Text PDF

APOE is the major genetic risk factor for sporadic Alzheimer's disease (AD). Although APOE is known to promote Aβ pathology, recent data also support an effect of APOE polymorphism on phosphorylated Tau (pTau) pathology. To elucidate these potential effects, the pTau interactome was analyzed across APOE genotypes in the frontal cortex of 10 advanced AD cases (n = 5 APOE and n = 5 APOE), using a combination of anti-pTau pS396/pS404 (PHF1) immunoprecipitation (IP) and mass spectrometry (MS).

View Article and Find Full Text PDF

E3-ubiquitin ligases (E3s) are main components of the ubiquitin-proteasome system (UPS), as they determine substrate specificity in response to internal and external cues to regulate protein homeostasis. However, the regulation of membrane protein ubiquitination by E3s within distinct cell membrane compartments or organelles is not well understood. We show that FBXO10, the interchangeable component of the SKP1/CUL1/F-box ubiquitin ligase complex (SCF-E3), undergoes lipid-modification with geranylgeranyl isoprenoid at Cysteine953 (C953), facilitating its dynamic trafficking to the outer mitochondrial membrane (OMM).

View Article and Find Full Text PDF

Glycolysis is a fundamental cellular process, yet its regulatory mechanisms remain incompletely understood. Here, we show that a subset of glucose transporter 1 (GLUT1/SLC2A1) co-endocytoses with platelet-derived growth factor (PDGF) receptor (PDGFR) upon PDGF-stimulation. Furthermore, multiple glycolytic enzymes localize to these endocytosed PDGFR/GLUT1-containing vesicles adjacent to mitochondria.

View Article and Find Full Text PDF

The venom of cone snails has been proven to be a rich source of bioactive peptides that target a variety of ion channels and receptors. α-Conotoxins (αCtx) interact with nicotinic acetylcholine receptors (nAChRs) and are powerful tools for investigating the structure and function of the various nAChR subtypes. By studying how conotoxins interact with nAChRs, we can improve our understanding of these receptors, leading to new insights into neurological diseases associated with nAChRs.

View Article and Find Full Text PDF

Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner.

View Article and Find Full Text PDF

The prevalence of epilepsy is increased among Alzheimer's Disease (AD) patients and cognitive impairment is common among people with epilepsy. Epilepsy and AD are linked but the shared pathophysiological changes remain poorly defined. We aim to identify protein differences associated with epilepsy and AD using published proteomics datasets.

View Article and Find Full Text PDF
Article Synopsis
  • * D-type cyclins are recruited to oxidative damage sites, protecting p21 from degradation, which in turn blocks MMR by competing with MMR components for binding to PCNA.
  • * The degradation of D-type cyclins at the G1/S transition is crucial for allowing MMR proteins to interact with PCNA, ensuring proper repair of DNA replication errors; however, persistent cyclin D1 during S-phase can increase mutation rates.
View Article and Find Full Text PDF

Mitochondrial fusion requires the sequential merger of four bilayers to two. The outer-membrane solute carrier protein SLC25A46 interacts with both the outer and inner-membrane dynamin family GTPases Mfn1/2 and Opa1. While SLC25A46 levels are known to affect mitochondrial morphology, how SLC25A46 interacts with Mfn1/2 and Opa1 to regulate membrane fusion is not understood.

View Article and Find Full Text PDF
Article Synopsis
  • * A new quantitative method for generating hydroxyl radicals is introduced, using common laboratory equipment and reagents to facilitate protein oxidative footprinting.
  • * The effectiveness of this method is illustrated through oxidation analyses of various proteins, including lysozyme and RAS-monobody complexes, achieving high-resolution mapping of protein structures at the level of single amino acids.
View Article and Find Full Text PDF

The cell wall of mycobacteria plays a key role in interactions with the environment. Its ability to act as a selective filter is crucial to bacterial survival. Proteins in the cell wall enable this function by mediating the import and export of diverse metabolites, from ions to lipids to proteins.

View Article and Find Full Text PDF

Mitochondrial DNA double-strand breaks (mtDSBs) lead to the degradation of circular genomes and a reduction in copy number; yet, the cellular response in human cells remains elusive. Here, using mitochondrial-targeted restriction enzymes, we show that a subset of cells with mtDSBs exhibited defective mitochondrial protein import, reduced respiratory complexes, and loss of membrane potential. Electron microscopy confirmed the altered mitochondrial membrane and cristae ultrastructure.

View Article and Find Full Text PDF

Intracellular degradation of proteins and organelles by the autophagy-lysosome system is essential for cellular quality control and energy homeostasis. Besides degradation, endolysosomal organelles can fuse with the plasma membrane and contribute to unconventional secretion. Here, we identify a function for mammalian SKP1 in endolysosomes that is independent of its established role as an essential component of the family of SCF/CRL1 ubiquitin ligases.

View Article and Find Full Text PDF

Hypoxic cancer cells resist many anti-neoplastic therapies and can seed recurrence. We found previously that PTP1B deficiency promotes HER2+ breast cancer cell death in hypoxia by activating RNF213, an ∼600kDa protein containing AAA-ATPase domains and two ubiquitin ligase domains (RING and RZ) that also is implicated in Moyamoya disease (MMD), lipotoxicity, and innate immunity. Here we report that PTP1B and ABL1/2 reciprocally control RNF213 phosphorylation on tyrosine-1275.

View Article and Find Full Text PDF