This study reported a one-spot preparation of magnetic composite carbon (MCC@Fe) from microcrystalline cellulose (MC). The pure cellulose was impregnated in iron (III) chloride solution and carbonized at 650 °C. The MCC@Fe composite adsorbent underwent various characterization techniques.
View Article and Find Full Text PDFTextile dyes are frequently disposable in aqueous effluents, making it difficult to remove them from industrial effluents before their release to natural waters. This paper deals with the fabrication of cellulose-based adsorbents by reacting nanocelulose crystalline (nanocel) with N-[3-(trimethoxysilyl)propyl]ethylenediamine (TMSPEDA), forming the hybrid (silylpropyl)ethylenediamine@nanocellulose (SPEDA@nanocel), which was employed as adsorbent for the uptake of reactive yellow 2 dye (RY-2) from aqueous effluents. Characterisation of SPEDA@nanocel was carried out using FTIR, SEM-EDS, XRD, TGA, surface area, pH, and hydrophobicity/hydrophilicity ratio (HI).
View Article and Find Full Text PDFA grafting of N-(3-trimethoxysilylpropyl)diethylenetriamine (TMSPDETA) on natural clay was carried out to obtain an organic-inorganic hybrid clay material that was applied as an adsorbent to the uptake of Reactive Blue 19 (RB-19) and Reactive Green 19 (RG-19) dyes from aqueous wastewaters. This research demonstrates the effect of TMSPDETA contents on amino-functionalized clay materials' hydrophobic/hydrophilic behavior. The resultant material was utilized to uptake reactive dyes in aqueous solutions.
View Article and Find Full Text PDFThis work proposes a facile methodology for producing porous biochar material (ABC) from açaí kernel residue, produced by chemical impregnation with ZnCl2 (1:1) and pyrolysis at 650.0 °C. The characterization was achieved using several techniques, and the biochar material was employed as an adsorbent to remove catechol.
View Article and Find Full Text PDFIn this study, avocado seed was successfully used as raw material for producing activated carbons by conventional pyrolysis. In order to determine the best condition to produce the activated carbons, a 2 full-factorial design of experiment (DOE) with three central points was employed by varying the temperature and time of pyrolysis. The two evaluated factors (temperature and time of pyrolysis) strongly influenced the S, pore volumes, hydrophobicity-hydrophilicity ratio (HI) and functional groups values; both factors had a negative effect over S, pore volumes and functional groups which means that increasing the values of factors leads to decrease of these responses; on the other hand, with regards to HI, both factors caused a positive effect which means that increasing their values, the HI has an enhancement over its values.
View Article and Find Full Text PDF