In a recent paper in this journal (, 2023, , 2429), we described an unusually strong impact of regiospecific exchange of phenylalanines by tyrosines in 10 gallium-68-labeled trimers of certain cyclic RGD peptides, c[XRGDLAXp(Me)K] (X = F or Y), on non-specific organ uptakes. We found that there was, in part, no correlation of liver uptake with established polarity proxies, such as the octanol-water distribution coefficient (log ). Since this observation could not be explained straightforwardly, we suggested that the symmetry of the compounds had resulted in a synergistic interaction of certain components of the macromolecules.
View Article and Find Full Text PDFReceptor-selective peptides are widely used as smart carriers for specific tumor-targeted delivery. A remarkable example is the cyclic nonapeptide RGD (CRGDKPGDC, ) that couples intrinsic cytotoxic effects with striking tumor-homing properties. These peculiar features are based on a rather complex multistep mechanism of action, where the primary event is the recognition of RGD integrins.
View Article and Find Full Text PDFHuman brain cells generated by in vitro cell programming provide exciting prospects for disease modeling, drug discovery and cell therapy. These applications frequently require efficient and clinically compliant tools for genetic modification of the cells. Recombinant adeno-associated viruses (AAVs) fulfill these prerequisites for a number of reasons, including the availability of a myriad of AAV capsid variants with distinct cell type specificity (also called tropism).
View Article and Find Full Text PDFHigh levels of reactive oxygen species (ROS) in tumors have been shown to exert anti-tumor activity, leading to the concept of ROS induction as therapeutic strategy. The organometallic compound ferrocene (Fc) generates ROS through a reversible one-electron oxidation. Incorporation of Fc into a tumor-targeting, bioactive molecule can enhance its therapeutic activity and enable tumor specific delivery.
View Article and Find Full Text PDFFunctional selectivity is the ligand-specific activation of certain signal transduction pathways at a receptor and has been described for G protein-coupled receptors. However, it has not yet been described for ligands interacting with integrins without αI domain. Here, we show by molecular dynamics simulations that four side chain-modified derivatives of tauroursodeoxycholic acid (TUDC), an agonist of αβ integrin, differentially shift the conformational equilibrium of αβ integrin towards the active state, in line with the extent of β integrin activation from immunostaining.
View Article and Find Full Text PDF