Publications by authors named "Beatrice Satiat-Jeunemaitre"

Ion transporters are key players of cellular processes. The mechanistic properties of ion transporters have been well elucidated by biophysical methods. Meanwhile, the understanding of their exact functions in cellular homeostasis is limited by the difficulty of monitoring their activity in vivo.

View Article and Find Full Text PDF

Autophagy is a eukaryotic catabolic pathway essential for growth and development. In plants, it is activated in response to environmental cues or developmental stimuli. However, in contrast to other eukaryotic systems, we know relatively little regarding the molecular players involved in autophagy and the regulation of this complex pathway.

View Article and Find Full Text PDF

Autophagy is a catabolic process used by eukaryotic cells to maintain or restore cellular and organismal homeostasis. A better understanding of autophagy in plant biology could lead to an improvement of the recycling processes of plant cells and thus contribute, for example, towards reducing the negative ecological consequences of nitrogen-based fertilizers in agriculture. It may also help to optimize plant adaptation to adverse biotic and abiotic conditions through appropriate plant breeding or genetic engineering to incorporate useful traits in relation to this catabolic pathway.

View Article and Find Full Text PDF

Autophagy is a critical pathway for plant adaptation to stress. Macroautophagy relies on the biogenesis of a specialized membrane named the phagophore that maturates into a double membrane vesicle. Proteins and lipids act synergistically to promote membrane structure and functions, yet research on autophagy has mostly focused on autophagy-related proteins while knowledge of supporting lipids in the formation of autophagic membranes remains scarce.

View Article and Find Full Text PDF

DNA remodeling during endoreplication appears to be a strong developmental characteristic in orchids. In this study, we analyzed DNA content and nuclei in 41 species of orchids to further map the genome evolution in this plant family. We demonstrate that the DNA remodeling observed in 36 out of 41 orchids studied corresponds to strict partial endoreplication.

View Article and Find Full Text PDF

Recently, a number of diverse correlative light and electron microscopy (CLEM) protocols have been developed for several model organisms. However, these CLEM methods have largely bypassed plant cell research, with most protocols having little application to plants. Using autophagosome identification as a biological background, we propose and compare two CLEM protocols that can be performed in most plant research laboratories, providing a good compromise that preserves fluorescent signals as well as ultrastructural features.

View Article and Find Full Text PDF

Brassinosteroids are plant steroid hormones that control many aspects of plant growth and development, and are perceived at the cell surface by the plasma membrane-localized receptor kinase BRI1. Here we show that BRI1 is post-translationally modified by K63 polyubiquitin chains in vivo. Using both artificial ubiquitination of BRI1 and generation of an ubiquitination-defective BRI1 mutant form, we demonstrate that ubiquitination promotes BRI1 internalization from the cell surface and is essential for its recognition at the trans-Golgi network/early endosomes (TGN/EE) for vacuolar targeting.

View Article and Find Full Text PDF

Imaging or quantifying protein synthesis in cellulo through a well-resolved analysis of the cell cycle (also defining G1 subcompartments) is a methodological challenge. Click chemistry is the method of choice to reveal the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU) and track proliferating nuclei undergoing DNA synthesis. However, the click reaction quenches fluorescent proteins.

View Article and Find Full Text PDF

Autophagosomes arise in yeast and animals from the sealing of a cup-shaped double-membrane precursor, the phagophore. The concerted action of about 30 evolutionarily conserved autophagy related (ATG) proteins lies at the core of this process. However, the mechanisms allowing phagophore generation and its differentiation into a sealed autophagosome are still not clear in detail, and very little is known in plants.

View Article and Find Full Text PDF

Plant cytokinesis requires intense membrane trafficking and remodeling to form a specific membrane structure, the cell plate that will ultimately separate the daughter cells. The nature and the role of lipids involved in the formation of the cell plate remain unclear. Plant membranes are particularly rich in sphingolipids such as glucosyl-ceramides with long (16 carbons) or very long (24 carbons) acyl chains.

View Article and Find Full Text PDF

Autophagosomes are the organelles responsible for macroautophagy and arise, in yeast and animals, from the sealing of a cup-shaped double-membrane precursor, the phagophore. How the phagophore is generated and grows into a sealed autophagosome is still not clear in detail, and unknown in plants. This is due, in part, to the scarcity of structurally informative, real-time imaging data of the required protein machinery at the phagophore formation site.

View Article and Find Full Text PDF

The formation of the autophagic vesicles requires the recruitment of ubiquitin-like Atg8 proteins to the membrane of nascent autophagosomes. Seven Atg8 homologs are present in mammals, split into the LC3 and the GABARAP/GATE-16 families, whose respective functions are unknown. Using Caenorhabditis elegans, we investigated the functions of the GABARAP and the LC3 homologs, LGG-1 and LGG-2, in autophagosome biogenesis.

View Article and Find Full Text PDF

Cardiolipin (CL) is the signature phospholipid of the mitochondrial inner membrane. In animals and yeast (Saccharomyces cerevisiae), CL depletion affects the stability of respiratory supercomplexes and is thus crucial to the energy metabolism of obligate aerobes. In eukaryotes, the last step of CL synthesis is catalyzed by CARDIOLIPIN SYNTHASE (CLS), encoded by a single-copy gene.

View Article and Find Full Text PDF

Several vacuolar sorting determinants (VSDs) have been described for protein trafficking to the vacuoles in plant cells. Because of the variety in plant models, cell types and experimental approaches used to decipher vacuolar targeting processes, it is not clear whether the three well-known groups of VSDs identified so far exhaust all the targeting mechanisms, nor if they reflect certain protein types or families. The vacuolar targeting mechanisms of the aspartic proteinases family, for instance, are not yet fully understood.

View Article and Find Full Text PDF

N-terminal fatty acylations (N-myristoylation [MYR] and S-palmitoylation [PAL]) are crucial modifications affecting 2 to 4% of eukaryotic proteins. The role of these modifications is to target proteins to membranes. Predictive tools have revealed unexpected targets of these acylations in Arabidopsis thaliana and other plants.

View Article and Find Full Text PDF

Optimizing sample processing, reducing the duration of the preparation of specimen, and adjusting procedures to adhere to new health and safety regulations, are the current challenges of plant electron microscopists. To address these issues, plant processing protocols for TEM, combining the use of polyphenolic compounds as substitute for uranyl acetate with microwave technology are being developed. In the present work, we optimized microwave-assisted processing of different types of plant tissue for ultrastuctural and immunocytochemical studies.

View Article and Find Full Text PDF

Plant cells are characterized by the presence of chloroplasts, membrane lipids of which contain up to ∼80% mono- and digalactosyldiacylglycerol (MGDG and DGDG). The synthesis of MGDG in the chloroplast envelope is essential for the biogenesis and function of photosynthetic membranes, is coordinated with lipid metabolism in other cell compartments and is regulated in response to environmental factors. Phenotypic analyses of Arabidopsis using the recently developed specific inhibitor called galvestine-1 complete previous analyses performed using various approaches, from enzymology, cell biology to genetics.

View Article and Find Full Text PDF

Acyl chain length is thought to be crucial for biophysical properties of the membrane, in particular during cell division, when active vesicular fusion is necessary. In higher plants, the process of cytokinesis is unique, because the separation of the two daughter cells is carried out by de novo vesicular fusion to generate a laterally expanding cell plate. In Arabidopsis thaliana, very-long-chain fatty acid (VLCFA) depletion caused by a mutation in the microsomal elongase gene PASTICCINO2 (PAS2) or by application of the selective elongase inhibitor flufenacet altered cytokinesis.

View Article and Find Full Text PDF

Sphingolipids are a class of structural membrane lipids involved in membrane trafficking and cell polarity. Functional analysis of the ceramide synthase family in Arabidopsis thaliana demonstrates the existence of two activities selective for the length of the acyl chains. Very-long-acyl-chain (C > 18 carbons) but not long-chain sphingolipids are essential for plant development.

View Article and Find Full Text PDF

Plant cell vacuoles are diverse and dynamic structures. In particular, during seed germination, the protein storage vacuoles are rapidly replaced by a central lytic vacuole enabling rapid elongation of embryo cells. In this study, we investigate the dynamic remodeling of vacuolar compartments during Arabidopsis seed germination using immunocytochemistry with antibodies against tonoplast intrinsic protein (TIP) isoforms as well as proteins involved in nutrient mobilization and vacuolar acidification.

View Article and Find Full Text PDF

Sphingolipids play an essential role in the functioning of the secretory pathway in eukaryotic organisms. Their importance in the functional organization of plant cells has not been studied in any detail before. The sphingolipid synthesis inhibitor fumonisin B1 (FB1), a mycotoxin acting as a specific inhibitor of ceramide synthase, was tested for its effects on cell growth, cell polarity, cell shape, cell cycle and on the ultrastructure of BY2 cells.

View Article and Find Full Text PDF

Photoactivatable and photoconvertible fluorescent proteins capable of pronounced light-induced spectral changes are a powerful addition to the fluorescent protein toolbox of the cell biologist. They permit specific tracking of one subcellular structure (organelle or cell subdomain) within a differentially labelled population. They also enable pulse-chase analysis of protein traffic.

View Article and Find Full Text PDF