Publications by authors named "Beatrice Sampaolese"

S100B is an astrocytic cytokine that has been shown to be involved in several neurodegenerative diseases. We used an astrocytoma cell line (U373 MG) silenced for S100B, and stimulated it with amyloid beta-peptide (Aβ) as a known paradigm factor for astrocyte activation, and showed that the ability of the cell (including the gene machinery) to express S100B is a prerequisite for inducing reactive astrocytic features, such as ROS generation, NOS activation and cytotoxicity. Our results showed that control astrocytoma cell line exhibited overexpression of S100B after Aβ treatment, and subsequently cytotoxicity, increased ROS generation and NOS activation.

View Article and Find Full Text PDF

Diabetes-induced oxidative stress induces the development of vascular complications, which are significant causes of morbidity and mortality in diabetic patients. Among these, diabetic retinopathy (DR) is often caused by functional changes in the blood-retinal barrier (BRB) due to harmful oxidative stress events in lipids, proteins, and DNA. Docosahexaenoic acid (DHA) has a potential therapeutic effect against hyperglycemia-induced oxidative damage and apoptotic pathways in the main constituents of BRB, retinal pigment epithelium cells (ARPE-19).

View Article and Find Full Text PDF

Diabetes-induced oxidative stress leads to the onset of vascular complications, which are major causes of disability and death in diabetic patients. Among these, diabetic retinopathy (DR) often arises from functional alterations of the blood-retinal barrier (BRB) due to damaging oxidative stress reactions in lipids, proteins, and DNA. This study aimed to investigate the impact of the ω3-polyunsaturated docosahexaenoic acid (DHA) on the regulation of redox homeostasis in the human retinal pigment epithelial (RPE) cell line (ARPE-19) under hyperglycemic-like conditions.

View Article and Find Full Text PDF

Idebenone is a ubiquinone short-chain synthetic analog with antioxidant properties, which is believed to restore mitochondrial ATP synthesis. As such, idebenone is investigated in numerous clinical trials for diseases of mitochondrial aetiology and it is authorized as a drug for the treatment of Leber's hereditary optic neuropathy. Mitochondria of retinal pigment epithelium (RPE) are particularly vulnerable to oxidative damage associated with cellular senescence.

View Article and Find Full Text PDF
Article Synopsis
  • S100B is a protein linked to inflammation, with higher levels correlating to increased damage in conditions like multiple sclerosis.
  • The study explores the effects of arundic acid (AA), an inhibitor of S100B production, showing that AA-treated mice had milder symptoms and less damage during chronic experimental autoimmune encephalomyelitis.
  • Findings suggest that targeting S100B with treatments like AA could be a promising approach for managing multiple sclerosis.
View Article and Find Full Text PDF

In the current work, a series of novel 4-benzyloxy and 4-(2-phenylethoxy) chalcone fibrate hybrids (10a-o) and (11a-e) were synthesized and evaluated as new PPARα agonists in order to find new agents with higher activity and fewer side effects. The 2-propanoic acid derivative 10a and the 2-butanoic acid congener 10i showed the best overall PPARα agonistic activity showing E% values of 50.80 and 90.

View Article and Find Full Text PDF

S100B is a calcium-binding protein mainly expressed by astrocytes, but also localized in other definite neural and extra-neural cell types. While its presence in biological fluids is widely recognized as a reliable biomarker of active injury, growing evidence now indicates that high levels of S100B are suggestive of pathogenic processes in different neural, but also extra-neural, disorders. Indeed, modulation of S100B levels correlates with the occurrence of clinical and/or toxic parameters in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, muscular dystrophy, multiple sclerosis, acute neural injury, inflammatory bowel disease, uveal and retinal disorders, obesity, diabetes and cancer, thus directly linking the levels of S100B to pathogenic mechanisms.

View Article and Find Full Text PDF

The retinal pigment epithelium (RPE) is a densely pigmented, monostratified epithelium that provides metabolic and functional support to the outer segments of photoreceptors. Endogenous or exogenous oxidative stimuli determine a switch from physiological to pathological conditions, characterized by an increase of intracellular levels of reactive oxygen species (ROS). Accumulating evidence has elucidated that punicalagin (PUN), the major ellagitannin in pomegranate, is a potent antioxidant in several cell types.

View Article and Find Full Text PDF

The oxidative damage of the retinal pigment epithelium (RPE) is the early event that underlies the pathogenesis of maculopathies. Numerous studies have shown that punicalagin (PUN), a polyphenol present in pomegranate, can protect several cell types from oxidative stress. Our study aims to establish if PUN protects RPE from UV radiation-induced oxidative damage.

View Article and Find Full Text PDF

S100B is an astrocytic protein acting either as an intracellular regulator or an extracellular signaling molecule. A direct correlation between increased amount of S100B and demyelination and inflammatory processes has been demonstrated. The aim of this study is to investigate the possible role of a small molecule able to bind and inhibit S100B, pentamidine, in the modulation of disease progression in the relapsing-remitting experimental autoimmune encephalomyelitis mouse model of multiple sclerosis.

View Article and Find Full Text PDF

Docosahexaenoic acid (DHA) is an omega‑3 polyunsaturated fatty acid, derived mainly from fish oil. It is well known that DHA is present in high concentrations in nervous tissue and plays an important role in brain development and neuroprotection. However, the molecular mechanisms underlying its role remain to be fully elucidated.

View Article and Find Full Text PDF

Circulating red blood cells (RBCs) undergo aging, a fundamental physiological phenomenon that regulates their turnover. We show that treatment with beta amyloid peptide 1-42 (Aβ) accelerates the occurrence of morphological and biochemical aging markers in human RBCs and influences the cell metabolism leading to intracellular ATP depletion. The morphological pattern has been monitored using Atomic Force Microscopy (AFM) imaging and measuring the RBCs' plasma membrane roughness employed as a morphological parameter capable to provide information on the structure and integrity of the membrane-skeleton.

View Article and Find Full Text PDF

Long-term exposure to ultraviolet (UV) radiation is associated with pathological alterations of the retinal pigment epithelium (RPE). It has been indicated that Cortistatin (CST) and somatostatin (SST) are able to inhibit the neurodegeneration of the RPE associated with diabetic retinopathy and retinal ischemia via activation of SST receptors (SSTRs). To the best of our knowledge, the present study indicated for the first time that treatment with UV‑A (30 and 60 min) causes an increase of CST expression, rather than SST, which was linked with the upregulation of STTR3,4,5 subtype receptor gene expression levels.

View Article and Find Full Text PDF

Background: Oxidative stress has long been linked to neuronal cell death in many neurodegenerative diseases. Antioxidant conventional supplements are poorly effective in preventing neuronal damage caused by oxidative stress due to their inability to cross the blood brain barrier. Hence the use of molecules extracted from plants and fruits such as phenolics, flavonoids, and terpenoids compounds constitute a new wave of antioxidant therapies to defend against free radicals.

View Article and Find Full Text PDF

Pathological alterations to the retinal pigment epithelium underlie several eye diseases, which lead to visual impairment and even blindness. Exposure to ultraviolet (UV) radiation is associated with some skin and ocular pathologies; UV radiation may induce DNA breakdown and cause cellular damage through the production of reactive oxygen species (ROS), thus leading to programmed cell death. The present study aimed to investigate the production of ROS and the gene expression levels of anti‑ and proapoptotic proteins [B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (Bax) and caspase‑3] in human retinal pigment epithelial cells (ARPE‑19) treated with UV‑A for 5 h consecutively.

View Article and Find Full Text PDF

Background: In this study, human neuroblastoma cells (IMR32) treated with Amyloid Beta Peptide (APβ), were used as model to evaluate the molecular basis of protective role of S100b, a neurotrophic factor and neuronal survival protein, highly expressed by reactive astrocytes close to amyloid deposition in the cortex of Alzheimer's patients. The aim of this work is to value the effect of S100b on ROS production in cells treated with Amyloid Beta Peptide and the subsequent influence on globin gene expression.

Method: In this study we investigated the effect of S100b on ROS production and on globin gene expression in human neuroblastoma cells (IMR32) treated with Amyloid Beta Peptide (APβ).

View Article and Find Full Text PDF

Until few years ago, many studies of Alzheimer's disease investigated the effects of this syndrome in the central nervous system. Only recently, the detection of amyloid beta peptide (Aβ) in the blood has evidenced the necessity to extend studies on extraneuronal cells, particularly on erythrocytes. Aβ is also present in brain capillaries, where it interacts with the erythrocytes, inducing several metabolic and functional alterations.

View Article and Find Full Text PDF

Background: Lamellar ichthyosis (LI) is a congenital recessive skin disorder characterized by generalized scaling and hyperkeratosis. The pathology may be caused by mutations in transglutaminase 1 (TGM1) gene that encodes an enzyme critical for terminally differentiating keratinocytes. Because of evidences that transglutaminase enzymes are involved in programmed cell death, we investigated morphological and biochemical apoptotic parameters in cultured skin fibroblasts from a patient with a severe LI and homozygous for the TGM1 R142H mutation.

View Article and Find Full Text PDF

Human cervical mucus is a heterogeneous mixture of mucin glycoproteins whose relative concentration changes during the ovulatory phases, thereby producing different mucus aggregation structures that can periodically permit the transit of spermatozoa for fertilization. In preovulatory phase, mucus is arranged in compact fiber-like structures where sperm transit is hindered. Previously, through observations made of fixed and dehydrated samples, a permissive structure in the ovulatory phase was attributed to the larger diameters of pores in the mucus network.

View Article and Find Full Text PDF

The toxic behaviour of the two shorter sequences of the native Abeta amyloid peptide required for cytotoxicity i.e., Abeta(31-35) and Abeta(25-35) peptides, was studied.

View Article and Find Full Text PDF

The sequence-dependent curvature is generally recognized as an important and biologically relevant property of DNA because it is involved in the formation and stability of association complexes with proteins. When a DNA tract, intrinsically curved for the periodical recurrence on the same strand of A-tracts phased with the B-DNA periodicity, is deposited on a flat surface, it exposes to that surface either a T- or an A-rich face. The surface of a freshly cleaved mica crystal recognizes those two faces and preferentially interacts with the former one.

View Article and Find Full Text PDF

The preferential assembly of specialized nucleosomes on budding yeast centromeres can be due either to the higher stability of specialized centromeric nucleosomes and/or to the lower stability of canonical centromeric nucleosomes with respect to bulk nucleosomes. We have evaluated the thermodynamic stability of canonical nucleosomes, assembled on Kluyveromyces lactis centromeric DNAs, with a competitive reconstitution assay and a theoretical method recently developed by us. The results, obtained by both methods, show that all five known centromeric DNAs from K.

View Article and Find Full Text PDF