Carbon monoxide (CO) is a lethal gas, present during incomplete combustion of carbonaceous materials. CO may be present in certain occupational atmospheres or during accidental events such as fires. Colorless and odorless, its presence can only be detected analytically.
View Article and Find Full Text PDFNucleoside analogues are widely used as anti-infectious and antitumoral agents. However, their clinical use may face limitations associated with their physicochemical properties, pharmacokinetic parameters, and/or their peculiar mechanisms of action. Indeed, once inside the cells, nucleoside analogues require to be metabolized into their corresponding (poly-)phosphorylated derivatives, mediated by cellular and/or viral kinases, in order to interfere with nucleic acid biosynthesis.
View Article and Find Full Text PDF5-Fluorouracil (5-FU) is an anticancer drug extensively used for different cancers. Intracellular metabolic activation leads to several nucleoside and nucleotide metabolites essential to exert its cytotoxic activity on multiple cellular targets such as enzymes, DNA and RNA. In this paper, we describe the development of a method based on liquid chromatography coupled with high resolution mass spectrometry suitable for the simultaneous determination of the ten anabolic metabolites (nucleoside, nucleotide and sugar nucleotide) of 5-FU.
View Article and Find Full Text PDFDinucleoside 5',5'-polyphosphates (DNPs) are endogenous substances that play important intra- and extracellular roles in various biological processes, such as cell proliferation, regulation of enzymes, neurotransmission, platelet disaggregation and modulation of vascular tone. Various methodologies have been developed over the past fifty years to access these compounds, involving enzymatic processes or chemical procedures based either on P(III) or P(V) chemistry. Both solution-phase and solid-support strategies have been developed and are reported here.
View Article and Find Full Text PDFA solvent-assisted mechanochemical approach to access symmetrical and mixed dinucleoside 5,5'-polyphosphates is reported. Under ball-milling conditions, nucleoside 5'-monophosphates were quantitatively activated using 1,1'-carbonyldiimidazole, forming their phosphorimidazolide derivatives. The addition of a nucleoside 5'-mono-, di- or triphosphate directly led to the formation of the corresponding dinucleotides.
View Article and Find Full Text PDFThis unit describes a one-pot, two step synthesis of ribonucleoside 5'-di- and 5'-triphosphates, as well as their purification. The first step of the synthesis involves the activation of an unprotected ribonucleoside 5'-monophosphate with 2-chloro-1,3-dimethylimidazolinium hexafluorophosphate and imidazole, in a mixture of water/acetonitrile. The resulting phosphorimidazolate intermediate is then treated with inorganic phosphate or pyrophosphate to afford the corresponding nucleoside 5'-di- or 5'-triphosphates.
View Article and Find Full Text PDFFocusing on the recent literature (since 2000), this review outlines the main synthetic approaches for the preparation of 5'-mono-, 5'-di-, and 5'-triphosphorylated nucleosides, also known as nucleotides, as well as several derivatives, namely, cyclic nucleotides and dinucleotides, dinucleoside 5',5'-polyphosphates, sugar nucleotides, and nucleolipids. Endogenous nucleotides and their analogues can be obtained enzymatically, which is often restricted to natural substrates, or chemically. In chemical synthesis, protected or unprotected nucleosides can be used as the starting material, depending on the nature of the reagents selected from P(III) or P(V) species.
View Article and Find Full Text PDFBackground: To date, the most effective way to treat HIV is to use a highly active antiretroviral therapy (HAART) that combines three or more different drugs. The usual regimen consists of two nucleoside reverse transcriptase inhibitors and either a protease inhibitor, a non-nucleoside reverse transcriptase inhibitor, or an integrase strand transfer inhibitor. Due to the emerging resistance against the nucleoside analogues in use, there is a continuous need for the development of such therapeutic molecules with different structural features.
View Article and Find Full Text PDFA molecularly imprinted polymer (MIP) was synthesized by non-covalent imprinting polymerization using irinotecan as template. Methacrylic acid and 4-vinylpyridine were selected as functional monomers. An optimized procedure coupled to LC-PDA analysis was developed for the selective solid-phase extraction of irinotecan from various organic media.
View Article and Find Full Text PDFSubstrate antagonism has been described for a variety of enzymes with more than one substrate and is characterized by a lowering of the affinity of one substrate in the presence of the other(s). 3-Phosphoglycerate kinase (PGK) catalyzes phosphotransfer from 1,3-bisphosphoglycerate (bPG) to ADP to give 3-phosphoglycerate (PG) and ATP, and is subject to substrate antagonism. Because of the instability of bPG, antagonism has only been described between PG and ATP or ADP.
View Article and Find Full Text PDFAffinity probe capillary electrophoresis (APCE) assays, combining the separation power of CE with the specificity of interactions occurring between a target and a molecular recognition element (MRE), have become important analytical tools in many application fields. In this report, a rationalized strategy, derived from the structure-switching aptamer concept, is described for the design of a novel APCE mode dedicated to small molecule detection. Two assay configurations were reported.
View Article and Find Full Text PDFA direct fluorescence polarization (FP) assay strategy, dedicated to the small molecule sensing and based on the unique induced-fit binding mechanism of end-labelled nucleic acid aptamers, has been recently developed by our group. Small target binding has been successfully converted into a significant increase of the fluorescence anisotropy signal presumably produced by the reduction of the local motional freedom of the dye. In order to generalize the approach, a rational FP sensor methodology was established herein, by engineering instability in the secondary structure of an aptameric recognition element.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
May 2009
A method was developed for the quantification of araCTP, CTP and dCTP in a human follicular lymphoma cell line. This method involves solid phase extraction (SPE) using a weak anion-exchanger (WAX) cartridge, a porous graphitic carbon high-performance liquid chromatography (HPLC) column separation, and tandem mass spectrometry (MS/MS) detection. By using a triple quadrupole mass spectrometer operating in negative ion multiple reaction monitoring (MRM) mode, the method was able to achieve a lower limit of quantification (LLOQ) of 0.
View Article and Find Full Text PDFIn this paper, a new aptamer-based capillary electrophoresis (CE) method, which was able to separate the enantiomers of an anionic target (adenosine monophosphate, AMP) displaying the same electrophoretic mobility as that of the oligonucleotidic chiral selector, is reported. The design of the aptamer-modified micellar electrokinetic chromatography (MEKC) mode consisted of nonionic micelles which acted as a pseudostationary phase and a hydrophobic cholesteryl group-tagged aptamer (Chol-Apt) which partitioned into the uncharged micellar phase. Under partial-filling format and suppressed electroosmotic flow conditions, the strong mobility alteration of Chol-Apt permitted AMP enantiomers to pass through the micelle-anchored aptamer zone and promoted the target enantioseparation.
View Article and Find Full Text PDFL-Nucleosides comprise a new class of antiviral and anticancer agents that are converted in vivo by a cascade of kinases to pharmacologically active nucleoside triphosphates. The last step of the cascade may be catalyzed by 3-phosphoglycerate kinase (PGK), an enzyme that has low specificity for nucleoside diphosphate (NDP): NDP + 1,3-bisphosphoglycerate <--> NTP + 3-phosphoglycerate. Here we compared the kinetics of the formation of the complexes of human PGK with d- and its mirror image l-ADP and the effect of 3-phosphoglycerate (PG) on these by exploiting the fluorescence signal of PGK that occurs upon its interaction with nucleotide substrate.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2008
l-Nucleoside-analogues, mirror images of the natural d-nucleosides, are a new class of antiviral and anticancer agents. In the cell they have to be phosphorylated to pharmacologically active triphosphate forms, the last step seems to involve human 3-phosphoglycerate kinase (hPGK). Here we present a steady state kinetic and biophysical study of the interaction of the model compound l-MgADP with hPGK.
View Article and Find Full Text PDFL-nucleoside analogues such as lamivudine are active for treating viral infections. Like D-nucleosides, the biological activity of the L-enantiomers requires their stepwise phosphorylation by cellular or viral kinases to give the triphosphate. The enantioselectivity of NMP kinases has not been thoroughly studied, unlike that of deoxyribonucleoside kinases.
View Article and Find Full Text PDFHere we examine the enantioselectivity of the allosteric and substrate binding sites of murine ribonucleotide reductase (mRR). L-ADP binds to the active site and L-ATP binds to both the s- and a-allosteric sites of mR1 with affinities that are only three- to 10-fold weaker than the values for the corresponding D-enantiomers. These results demonstrate the potential of L-nucleotides for interacting with and modulating the activity of mRR, a cancer chemotherapeutic and antiviral target.
View Article and Find Full Text PDFIn this paper, the enantioselectivity of ribonucleotide reductase (RNR, EC 1.17.4.
View Article and Find Full Text PDFNitric oxide displays pro- and anti-tumor activities, prompting further studies to better understand its precise role. Nitric oxide inhibits ribonucleotide reductase (RnR), the limiting enzyme for de novo dNTP synthesis. We report here the first detailed analysis of dNTP variations induced in tumor cells by NO.
View Article and Find Full Text PDFUnlike hydroxyurea, the CTP synthetase inhibitor acivicin and, to a lesser extent, two other inhibitors of CTP synthesis, increased the phosphorylation and anti-HIV-1 activity of 3TC in PHA-P-activated PBMC. These data suggest that to improve the antiretroviral activity of 3TC, it may be worth focusing on inhibition of CTP synthesis.
View Article and Find Full Text PDFHerein, we report the design, synthesis, and biological effects of nucleosides bearing a disulfide function on the sugar ring as prodrugs of potentially active mercaptonucleotides that can target ribonucleotide reductase or reverse transcriptase. We show that cytidine derivatives efficiently reduce dNTP pools in human CEM/SS cells and that 3'-deoxythymidin-3'-yl methyl disulfide is able to interfere with both cellular dNTP synthesis and HIV reverse transcription.
View Article and Find Full Text PDF