Publications by authors named "Beatrice Plazzotta"

By combining NMR (yielding H chemical shift, spin relaxation, and self-diffusion data) and small-angle X-ray scattering experiments, we investigate the complex temperature dependence of the molecular and aggregate states in aqueous solutions of the surfactant [CH(CH)(OCHCH)OH], abbreviated as C18E20, and hexamethyldisiloxane, HMDSO. The latter molecule serves as a model for hydrophobic solubilizates. Previously, the pure micellar solution was demonstrated to exhibit core freezing at approximately 7-8 °C.

View Article and Find Full Text PDF

Host-guest nanoassemblies made from spontaneous self-association of host and guest polymers in aqueous solutions have been studied. The specific motivation behind this work was to clarify the impact of the molecular design of the polymers on the interactions between them and on the inner structure of the resulting nanoassemblies. The polymers were composed of a dextran backbone, functionalized with either pendant β-cyclodextrin (CD) or adamantyl (Ada).

View Article and Find Full Text PDF

Determination of molecular masses of charged polymers is often nontrivial and most methods have their drawbacks. For polyelectrolytes, a new possibility for the determination of number-average molecular masses is represented by small-angle X-ray scattering (SAXS) which allows fast determinations with a 10% accuracy. This is done by relating the mass to the position of a characteristic peak feature which arises in SAXS due to the local ordering caused by charge-repulsions between polyelectrolytes.

View Article and Find Full Text PDF

Nonionic surfactants containing poly(ethylene oxide) are chemically simple and biocompatible and form core-shell micelles at a wide range of conditions. For those reasons, they and their aggregates have been widely investigated. Recently, irregularities that were observed in the low-temperature behavior of surfactants of the kind [CH3(CH2)(n)O(CH2CH2O)(m)H], (abbreviated CnEm) were assigned to a freezing-melting phase transition in the micellar core.

View Article and Find Full Text PDF

The soluble complexes of oppositely charged macromolecules and amphiphiles, formed in the one-phase concentration range, are usually described on the basis of the beads on a string model assuming spherelike bound surfactant micelles. However, around and above the charge neutralization ionic surfactant to polyion ratio, a variety of ordered structures of the precipitates and large polyion/surfactant aggregates have been reported for the different systems which are difficult to connect to globular-like surfactant self-assembly units. In this article we have demonstrated through SAXS measurements that the structure of precipitates and those of the soluble polyion/mixed surfactant complexes of poly(diallyldimethylammonium chloride) (PDADMAC), sodium dodecyl sulfate (SDS), and dodecyl-maltoside (DDM) are strongly correlated.

View Article and Find Full Text PDF