Publications by authors named "Beatrice Nal"

Article Synopsis
  • * Factor H (FH) regulates this system, preventing damage to the body's own cells and has been found to interact with human influenza A viruses (IAVs) through the virus's surface protein, haemagglutinin (HA).
  • * The study shows that FH can affect the entry of certain IAV strains into cells, with varying impacts on viral replication, clearly demonstrating that the interactions between FH and IAV depend on the specific strain involved.
View Article and Find Full Text PDF

Gain-of-function mutations in stimulator of interferon gene 1 (STING1) result in STING-associated vasculopathy with onset in infancy (SAVI), a severe autoinflammatory disease. Although elevated type I interferon (IFN) production is thought to be the leading cause of the symptoms observed in patients, STING can induce a set of pathways, which have roles in the onset and severity of SAVI and remain to be elucidated. To this end, we performed a multi-omics comparative analysis of peripheral blood mononuclear cells (PBMCs) and plasma from SAVI patients and healthy controls, combined with a dataset of healthy PBMCs treated with IFN-β.

View Article and Find Full Text PDF

Endo-lysosomes transport along microtubules and clustering in the perinuclear area are two necessary steps for microbes to activate specialized phagocyte functions. We report that RUN and FYVE domain-containing protein 3 (RUFY3) exists as two alternative isoforms distinguishable by the presence of a C-terminal FYVE domain and by their affinity for phosphatidylinositol 3-phosphate on endosomal membranes. The FYVE domain-bearing isoform (iRUFY3) is preferentially expressed in primary immune cells and up-regulated upon activation by microbes and Interferons.

View Article and Find Full Text PDF
Article Synopsis
  • C4b Binding Protein (C4BP) inhibits the complement system by binding to activated component C4b, working alongside factor I to prevent the formation of the C3-convertase, which is essential for immune response.
  • The study investigates C4BP's ability to interact with Influenza A Virus (IAV) subtypes H1N1 and H3N2, discovering that C4BP binds to various viral proteins and affects infection rates differently for each subtype.
  • C4BP decreases inflammatory responses for H1N1, acting as an entry inhibitor, while it enhances pro-inflammatory responses for H3N2, suggesting that C4BP has strain-dependent effects on IAV entry and replication independent of its
View Article and Find Full Text PDF
Article Synopsis
  • - The complement system is a key part of the innate immune defense that identifies pathogens, with factor H serving to regulate complement activation on host cells and locally at infection sites like the lungs.
  • - Factor H interacts with the influenza A virus (IAV), affecting its entry into cells and modulating the expression of matrix protein 1 (M1), with varying effects on inflammatory cytokines depending on the IAV subtype (H1N1 vs. H3N2).
  • - Both factor H and a similar protein (VCP) demonstrate different impacts on luciferase reporter activity in response to H1N1 and H3N2, highlighting factor H's role in modulating IAV infection and inflammatory responses outside of
View Article and Find Full Text PDF

Surfactant protein D (SP-D) is expressed in the mucosal secretion of the lung and contributes to the innate host defense against a variety of pathogens, including influenza A virus (IAV). SP-D can inhibit hemagglutination and infectivity of IAV, in addition to reducing neuraminidase (NA) activity via its carbohydrate recognition domain (CRD) binding to carbohydrate patterns (N-linked mannosylated) on NA and hemagglutinin (HA) of IAV. Here, we demonstrate that a recombinant fragment of human SP-D (rfhSP-D), containing homotrimeric neck and CRD regions, acts as an entry inhibitor of IAV and downregulates M1 expression considerably in A549 cells challenged with IAV of H1N1 and H3N2 subtypes at 2 h treatment.

View Article and Find Full Text PDF

Surfactant protein D (SP-D) is a soluble C-type lectin, belonging to the collectin (collagen-containing calcium-dependent lectin) family, which acts as an innate immune pattern recognition molecule in the lungs at other mucosal surfaces. Immune regulation and surfactant homeostasis are salient functions of SP-D. SP-D can bind to a range of viral, bacterial, and fungal pathogens and trigger clearance mechanisms.

View Article and Find Full Text PDF

To identify new host factors that modulate the replication of influenza A virus, we performed a yeast two-hybrid screen using the cytoplasmic tail of matrix protein 2 from the highly pathogenic H5N1 strain. The screen revealed a high-score interaction with cyclin D3, a key regulator of cell cycle early G phase. M2-cyclin D3 interaction was validated through GST pull-down and recapitulated in influenza A/WSN/33-infected cells.

View Article and Find Full Text PDF

Since its identification in the 1990s, the RNA interference (RNAi) pathway has proven extremely useful in elucidating the function of proteins in the context of cells and even whole organisms. In particular, this sequence-specific and powerful loss-of-function approach has greatly simplified the study of the role of host cell factors implicated in the life cycle of viruses. Here, we detail the RNAi method we have developed and used to specifically knock down the expression of ezrin, an actin binding protein that was identified by yeast two-hybrid screening to interact with the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) spike (S) protein.

View Article and Find Full Text PDF

Background: Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S). There are still many unknowns on the implication of cellular factors that regulate the entry process.

Methodology/principal Findings: We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle.

View Article and Find Full Text PDF

Background: Serological studies for influenza infection and vaccine response often involve microneutralization and hemagglutination inhibition assays to evaluate neutralizing antibodies against human and avian influenza viruses, including H5N1. We have previously characterized lentiviral particles pseudotyped with H5-HA (H5pp) and validated an H5pp-based assay as a safe alternative for high-throughput serological studies in BSL-2 facilities. Here we show that H5-HAs from different clades do not always give rise to efficient production of H5pp and the underlying mechanisms are addressed.

View Article and Find Full Text PDF

Human coronaviruses are associated with upper respiratory tract infections that occasionally spread to the lungs and other organs. Although airway epithelial cells represent an important target for infection, the respiratory epithelium is also composed of an elaborate network of dendritic cells (DCs) that are essential sentinels of the immune system, sensing pathogens and presenting foreign antigens to T lymphocytes. In this report, we show that in vitro infection by human coronavirus 229E (HCoV-229E) induces massive cytopathic effects in DCs, including the formation of large syncytia and cell death within only few hours.

View Article and Find Full Text PDF
Article Synopsis
  • The influenza A virus M2 ion channel protein has the longest cytoplasmic tail among viral envelope proteins and is conserved across different strains, making it important for understanding the virus's life cycle.
  • Researchers used a yeast two-hybrid screening technique to discover that the M2 cytoplasmic tail interacts with the human protein annexin A6 (AnxA6), confirmed through additional experimental methods.
  • AnxA6 appears to play a negative regulatory role in influenza A virus infection, as its depletion increases virus production, while overexpression decreases it; both conditions disrupt the virus's ability to bud and release effectively from infected cells.
View Article and Find Full Text PDF

Identification and characterization of virus-host interactions are very important steps toward a better understanding of the molecular mechanisms responsible for disease progression and pathogenesis. To date, very few cellular factors involved in the life cycle of flaviviruses, which are important human pathogens, have been described. In this study, we demonstrate a crucial role for class II Arf proteins (Arf4 and Arf5) in the dengue flavivirus life cycle.

View Article and Find Full Text PDF

Public health measures successfully contained outbreaks of the severe acute respiratory syndrome coronavirus (SARS-CoV) infection. However, the precursor of the SARS-CoV remains in its natural bat reservoir, and reemergence of a human-adapted SARS-like coronavirus remains a plausible public health concern. Vaccination is a major strategy for containing resurgence of SARS in humans, and a number of vaccine candidates have been tested in experimental animal models.

View Article and Find Full Text PDF

Intercellular tight junctions define epithelial apicobasal polarity and form a physical fence which protects underlying tissues from pathogen invasions. PALS1, a tight junction-associated protein, is a member of the CRUMBS3-PALS1-PATJ polarity complex, which is crucial for the establishment and maintenance of epithelial polarity in mammals. Here we report that the carboxy-terminal domain of the SARS-CoV E small envelope protein (E) binds to human PALS1.

View Article and Find Full Text PDF

Background: Flavivirus infected cells produce infectious virions and subviral particles, both of which are formed by the assembly of prM and E envelope proteins and are believed to undergo the same maturation process. Dengue recombinant subviral particles have been produced in cell cultures with either modified or chimeric proteins but not using the native forms of prM and E.

Methodology/principal Findings: We have used a codon optimization strategy to obtain an efficient expression of native viral proteins and production of recombinant subviral particles (RSPs) for all four dengue virus (DV) serotypes.

View Article and Find Full Text PDF

Actin polymerization plays a critical role in activated T lymphocytes both in regulating T cell receptor (TCR)-induced immunological synapse (IS) formation and signaling. Using gene targeting, we demonstrate that the hematopoietic specific, actin- and Arp2/3 complex-binding protein coronin-1A contributes to both processes. Coronin-1A-deficient mice specifically showed alterations in terminal development and the survival of alpha beta T cells, together with defects in cell activation and cytokine production following TCR triggering.

View Article and Find Full Text PDF

Antiviral immune defenses involve natural killer (NK) cells. We previously showed that the NK-activating receptor NKp44 is involved in the functional recognition of H1-type influenza virus strains by NK cells. In the present study, we investigated the interaction of NKp44 and the hemagglutinin of a primary influenza virus H5N1 isolate.

View Article and Find Full Text PDF

Vaccine-induced antibodies can prevent or, in the case of feline infectious peritonitis virus, aggravate infections by coronaviruses. We investigated whether a recombinant native full-length S-protein trimer (triSpike) of severe acute respiratory syndrome coronavirus (SARS-CoV) was able to elicit a neutralizing and protective immune response in animals and analyzed the capacity of anti-S antibodies to mediate antibody-dependent enhancement (ADE) of virus entry in vitro and enhancement of replication in vivo. SARS-CoV-specific serum and mucosal immunoglobulins were readily detected in immunized animals.

View Article and Find Full Text PDF

Post-translational modifications and correct subcellular localization of viral structural proteins are prerequisites for assembly and budding of enveloped viruses. Coronaviruses, like the severe acute respiratory syndrome-associated virus (SARS-CoV), bud from the endoplasmic reticulum-Golgi intermediate compartment. In this study, the subcellular distribution and maturation of SARS-CoV surface proteins S, M and E were analysed by using C-terminally tagged proteins.

View Article and Find Full Text PDF

The mechanism by which T cell antigen receptors (TCR) accumulate at the immunological synapse has not been fully elucidated. Since TCRs are continuously internalized and recycled back to the cell surface, we investigated the role of polarized recycling in TCR targeting to the immunological synapse. We show here that the recycling endosomal compartment of T cells encountering activatory antigen-presenting cells (APCs) polarizes towards the T cell-APC contact site.

View Article and Find Full Text PDF

Coronin has been described as an actin-binding protein of Dictyostelium discoideum, and it has been demonstrated to play a role in cell migration, cytokinesis and phagocytosis. Coronin-related proteins are found in many eukaryotic species, including Coronin-1 in mammals whose expression is enriched in the hematopoietic tissues. Here, we characterize Coronin-1 gene and protein expression in mouse embryonic and adult T lymphocytes.

View Article and Find Full Text PDF

Upon antigen recognition, T cells undergo substantial membrane and cytoskeletal rearrangements that lead to the formation of the immunological synapse and are necessary for subsequent T-cell activation. However, little is known about how membrane and cytoskeletal molecules interact during these processes. Here we discuss the involvement of the membrane-microfilament linker ezrin.

View Article and Find Full Text PDF

To search for genes that participate in regulatory networks sustaining mouse embryonic T-cell development, we have performed expression profiling using nylon macroarrays. Labeled samples representative of individual developmental stages were utilized, taking advantage of cell homogeneity during early thymus ontogeny. cDNAs revealing differential expression were further selected using labeled samples derived from lymphoid versus non-lymphoid tissues, and from mutant thymi exhibiting T-cell developmental defects.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session54jbm819unpj079anf00juok850am6ke): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once