Natural cytotoxicity receptors and NKG2D correspond to major activating receptors involved in triggering of tumor cell lysis by human NK cells. In this report, we investigated the expression of NKG2D ligands (NKG2DLs), MHC class I-related chain (MIC) A, MICB and UL16-binding proteins 1, 2 and 3, on a panel of human non-small-cell lung carcinoma cell lines, and we analyzed their role in tumor cell susceptibility to NK cell lysis. Although adenocarcinoma (ADC) cells expressed heterogeneous levels of NKG2DLs, they were often resistant to NK cell-mediated killing.
View Article and Find Full Text PDFVarious T cell adhesion molecules and their cognate receptors on target cells promote T cell receptor (TCR)-mediated cell killing. In this report, we demonstrate that the interaction of epithelial cell marker E-cadherin with integrin alpha(E)(CD103)beta(7), often expressed by tumor-infiltrating lymphocytes (TILs), plays a major role in effective tumor cell lysis. Indeed, we found that although tumor-specific CD103(+) TIL-derived cytotoxic T lymphocyte (CTL) clones are able to kill E-cadherin(+)/intercellular adhesion molecule 1(-) autologous tumor cells, CD103(-) peripheral blood lymphocyte (PBL)-derived counterparts are inefficient.
View Article and Find Full Text PDFNK cells are able to discriminate between normal cells and cells that have lost MHC class I (MHC-I) molecule expression as a result of tumor transformation. This function is the outcome of the capacity of inhibitory NK receptors to block cytotoxicity upon interaction with their MHC-I ligands expressed on target cells. To investigate the role of human NK cells and their various receptors in the control of MHC-I-deficient tumors, we have isolated several NK cell clones from lymphocytes infiltrating an adenocarcinoma lacking beta2-microglobulin expression.
View Article and Find Full Text PDFWe have isolated from tumor-infiltrating lymphocytes (TIL) and PBL of a lung carcinoma patient several tumor-specific T cell clones displaying similar peptide-MHC tetramer staining and expressing a unique TCR. Although these clones elicited identical functional avidity and similar cytolytic potential, only T cell clones derived from TIL efficiently lysed autologous tumor cells. Interestingly, all of these clones expressed the same T cell surface markers except for the TCR inhibitory molecule CD5, which was expressed at much lower levels in TIL than in PBL.
View Article and Find Full Text PDFT lymphocytes infiltrating a human lung carcinoma stimulated in vitro with autologous tumor cell line showed a TCRVbeta13.6(+) T-cell expansion. This subset was isolated using TCRVbeta-specific antibody and several T-cell clones were generated.
View Article and Find Full Text PDF