Despite initial high response rates to first-line EGFR TKI, all non-small-cell lung cancer (NSCLC) with EGFR-activating mutation will ultimately develop resistance to treatment. Identification of resistance mechanisms is critical to adapt treatment and improve patient outcomes. Here, we show that a transcript that encodes full-length catalytic subunit 2B of calcineurin accumulates in EGFR-mutant NSCLC cells with acquired resistance against different EGFR TKIs and in post-progression biopsies of NSCLC patients treated with EGFR TKIs.
View Article and Find Full Text PDFDespite the initial efficacy of using tyrosine kinase inhibitors of epidermal growth factor receptors (EGFR-TKIs) for treating patients with non-small cell lung cancer (NSCLC), resistance inevitably develops. Recent studies highlight a link between alternative splicing and cancer drug response. Therefore, we aimed to identify deregulated splicing events that play a role in resistance to EGFR-TKI.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
July 2022
Basic FGF (bFGF) was discovered as a typical inducer of angiogenesis and has already been studied for 3 decades. Recent evidence indicates that bFGF plays different roles and controls signaling pathways that participate in the hallmarks of cancer, underscoring bFGF an appealing target for anti-cancer therapy. However, the early clinical trials designed to block bFGF signaling showed safety without satisfiable benefits for cancer patients.
View Article and Find Full Text PDFBackground: Angiogenesis is the process by which new blood vessels arise from pre-existing ones. Fibroblast growth factor-2 (FGF-2), a leading member of the FGF family of heparin-binding growth factors, contributes to normal as well as pathological angiogenesis. Pre-mRNA alternative splicing plays a key role in the regulation of cellular and tissular homeostasis and is highly controlled by splicing factors, including SRSFs.
View Article and Find Full Text PDFThe synthesis of silica nanoparticles (SiNPs) decorated on their surface with a range of various elements (e.g., ligands, drugs, fluorophores, vectors, etc.
View Article and Find Full Text PDFType V collagen (ColV) is a component of the endothelial basement membrane zone. During angiogenesis, extracellular matrix remodelling results in the release of active protein fragments that display pro- or anti-angiogenic properties. The latter often exert their activity through their heparin-binding site.
View Article and Find Full Text PDFPre-mRNA splicing is the removal of introns and ligation of exons to form mature mRNAs, and it provides a critical mechanism by which eukaryotic cells can regulate their gene expression. Strikingly, more than 90% of protein-encoding transcripts are alternatively spliced, through exon inclusion/skipping, differential use of 5' or 3' alternative splice sites, intron retention or selection of an alternative promoter, thereby drastically increasing protein diversity. Splicing is altered in various pathological conditions, including cancers.
View Article and Find Full Text PDFCovering the surface of a nanoparticle with polyethylene glycol (PEG) is a common way to prevent non-specific interactions but how its presence impacts on the activity of targeting ligands is still poorly documented. We synthesized a set of 9 silica nanoparticles grafted with c[RGDfK]-, a peptide targeting integrin αß (cRGD) and/or with ATWLPPR, an anti-neuropilin 1 peptide (ATW). We then added various PEGs, and studied NPs binding on primary endothelial cells, the downstream activated signaling pathways and the impact on apoptosis.
View Article and Find Full Text PDFLung cancer, including non-small cell lung carcinoma (NSCLC), is the most frequently diagnosed cancer. It is also the leading cause of cancer-related mortality worldwide because of its late diagnosis and its resistance to therapies. Therefore, the identification of biomarkers for early diagnosis, prognosis, and monitoring of therapeutic response is urgently needed.
View Article and Find Full Text PDFThe splice variant sVEGFR1-i13 is a truncated version of the cell membrane-spanning VEGFR1 receptor that is devoid of its transmembrane and tyrosine kinase domains. We recently showed the contribution of sVEGFR1-i13 to the progression and the response of squamous lung carcinoma to anti-angiogenic therapies. In this study, we identify VEGF165, a splice variant of VEGF-A, as a regulator of sVEGFR1-i13 expression in these tumors, and further show that VEGF cooperates with the transcription factor SOX2 and the splicing factor SRSF2 to control sVEGFR1-i13 expression.
View Article and Find Full Text PDFVascular endothelial growth factor-A (VEGF-A) is highly subjected to alternative pre-mRNA splicing that generates several splice variants. The VEGF and VEGFb families encode splice variants of VEGF-A that differ only at the level of six amino acids in their C-terminal part. The expression level of VEGF splice variants and their function as pro-angiogenic factors during tumor neo-angiogenesis have been well-described.
View Article and Find Full Text PDFEpidermal Growth Factor Receptor (EGFR) signaling regulates multiple cellular processes including proliferation, survival and apoptosis, and is attenuated by lysosomal receptor degradation. EGFR is a potent oncogene and activating mutations of EGFR are critical determinants of oncogenic transformation as well as therapeutic targets in non-small cell lung cancer. We previously demonstrated that wild type and mutant EGFRs repress the expression of the ARF tumor suppressor to promote the survival of lung tumor cells.
View Article and Find Full Text PDFBr J Cancer
June 2018
Background: While lung adenocarcinoma patients can somewhat benefit from anti-angiogenic therapies, patients with squamous cell lung carcinoma (SQLC) cannot. The reasons for this discrepancy remain largely unknown. Soluble VEGF receptor-1, namely sVEGFR1-i13, is a truncated splice variant of the cell membrane-spanning VEGFR1 that has no transmembrane or tyrosine kinase domain.
View Article and Find Full Text PDFMany Receptor Tyrosine Kinases translocate from the cell surface to the nucleus in normal and pathological conditions, including cancer. Here we report the nuclear expression of insulin-like growth factor-1 receptor (IGF1R) in primary human lung tumours. Using lung cancer cell lines and lung tumour xenografts, we demonstrate that the epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) gefitinib induces the nuclear accumulation of IGF1R in mucinous lung adenocarcinoma by a mechanism involving the intracellular re-localization of the growth factor amphiregulin.
View Article and Find Full Text PDFAngiogenesis strongly depends on the activation of integrins, especially integrin αβ, and of neuropilin-1 (NRP-1), a co-receptor of VEGFR2. Dual-targeted molecules that simultaneously block both of them are expected have increased anti-angiogenic and antitumor activity. Toward this goal, we generated bifunctional 40 nm-sized silica nanoparticles (NPs) coated with controlled amounts of cRGD and ATWLPPR peptides and studied their affinity, selectivity and biological activity in HUVECs.
View Article and Find Full Text PDFReceptor tyrosine kinases (RTKs) belong to a family of transmembrane receptors that display tyrosine kinase activity and trigger the activation of downstream signalling pathways mainly involved in cell proliferation and survival. RTK amplification or somatic mutations leading to their constitutive activation and oncogenic properties have been reported in various tumour types. Numerous RTK-targeted therapies have been developed to counteract this hyperactivation.
View Article and Find Full Text PDFPurpose Of Review: PremRNA alternative splicing is more a rule than an exception as it affects more than 90% of multiexons genes and plays a key role in proteome diversity. Here, we discuss some recent studies published in the extensively growing field linking RNA splicing and cancer.
Recent Findings: These last years, the development of high-throughput studies together with appropriate bioinformatic tools have led to the identification of new cancer-specific splicing patterns that allow to distinguish various cancer types, and provide new prognosis biomarkers.
As glucose is a mandatory nutrient for cell proliferation and renewal, it is suspected that glucose microenvironment is sensed by all cell types to regulate angiogenesis. Several glucose-sensing components have been partially described to respond to high glucose levels. However, little is known about the response to low glucose.
View Article and Find Full Text PDFAlternative pre-mRNA splicing (AS) widely expands proteome diversity through the combinatorial assembly of exons. The analysis of AS on a large scale, by using splice-sensitive microarrays, is a highly efficient method to detect the majority of known and predicted alternative transcripts for a given gene. The response to targeted anticancer therapies cannot easily be anticipated without prior knowledge of the expression, by the tumor, of target proteins or genes.
View Article and Find Full Text PDF