Publications by authors named "Beatrice De Bovis"

Cervical lymph nodes (CLN) are the first lymph nodes encountered by material taking the oral route. To study their role in orally acquired infections, we analyzed 307 patients of up to 14 years treated in the university clinic of Skopje, Macedonia, for brucellosis, a zoonotic bacterial disease frequently acquired by ingestion of contaminated dairy products. From these children, 36% had lymphadenopathy.

View Article and Find Full Text PDF

Dendritic cells (DCs) and monocyte-derived macrophages (MΦs) are key components of intestinal immunity. However, the lack of surface markers differentiating MΦs from DCs has hampered understanding of their respective functions. Here, we demonstrate that, using CD64 expression, MΦs can be distinguished from DCs in the intestine of both mice and humans.

View Article and Find Full Text PDF

Background & Aims: Peyer's patches (PPs) of the small intestine are antigen sampling and inductive sites that help establish mucosal immunity. Luminal antigens are transported from the mucosal surface of PPs to the subepithelial dome (SED), through the specialized epithelial M cells of the follicle-associated epithelium. Among the SED resident dendritic cells (DCs), which are situated ideally for taking up these antigens, some express high levels of lysozyme (LysoDC) and have strong phagocytic activity.

View Article and Find Full Text PDF

Control of pulmonary pathogens constitutes a challenging task as successful immune responses need to be mounted without damaging the lung parenchyma. Using immunofluorescence microscopy and flow cytometry, we analyzed in the mouse the initial innate immune response that follows intranasal inoculation of Brucella abortus. Bacteria were absent from parenchymal dendritic cells (DC) but present in alveolar macrophages in which they replicated.

View Article and Find Full Text PDF

Embryonic motoneurons from mutant SOD1 (mSOD1) mouse models of amyotrophic lateral sclerosis (ALS), but not wild-type motoneurons, can be triggered to die by exposure to nitric oxide (NO), leading to activation of a motoneuron-specific signaling pathway downstream of the death receptor Fas/CD95. To identify effectors of mSOD1-dependent cell death, we performed a proteomic analysis. Treatment of cultured mSOD1 motoneurons with NO led to a 2.

View Article and Find Full Text PDF

Small intestinal CD103(+) dendritic cells (DCs) have the selective ability to promote de novo generation of regulatory T cells via the production of retinoic acid (RA). Considering that aldehyde dehydrogenase (ALDH) activity controls the production of RA, we used a flow cytometry-based assay to measure ALDH activity at the single-cell level and to perform a comprehensive analysis of the RA-producing DC populations present in lymphoid and nonlymphoid mouse tissues. RA-producing DCs were primarily of the tissue-derived, migratory DC subtype and can be readily found in the skin and in the lungs as well as in their corresponding draining lymph nodes.

View Article and Find Full Text PDF

Recent studies have challenged the view that Langerhans cells (LCs) constitute the exclusive antigen-presenting cells of the skin and suggest that the dermal dendritic cell (DDC) network is exceedingly complex. Using knockin mice to track and ablate DCs expressing langerin (CD207), we discovered that the dermis contains five distinct DC subsets and identified their migratory counterparts in draining lymph nodes. Based on this refined classification, we demonstrated that the quantitatively minor CD207+ CD103+ DDC subset is endowed with the unique capability of cross-presenting antigens expressed by keratinocytes irrespective of the presence of LCs.

View Article and Find Full Text PDF

Background & Aims: Lysozyme has an important role in preventing bacterial infection. In the gastrointestinal tract, lysozyme is thought to be mainly expressed by Paneth cells of the crypt epithelium. We investigated its expression in the Peyer's patch, a major intestinal site of antigen sampling and pathogen entry.

View Article and Find Full Text PDF

Langerhans cells (LCs) constitute a subset of dendritic cells (DCs) that express the lectin langerin and that reside in their immature state in epidermis. Paradoxically, in mice permitting diphtheria toxin (DT)-mediated ablation of LCs, epidermal LCs reappeared with kinetics that lagged behind that of their putative progeny found in lymph nodes (LNs). Using bone marrow (BM) chimeras, we showed that a major fraction of the langerin(+), skin-derived DCs found in LNs originates from a developmental pathway that is independent from that of epidermal LCs.

View Article and Find Full Text PDF

BACKGROUND: The ciliary neurotrophic factor (CNTF) receptor is composed of two signalling receptor chains, gp130 and the leukaemia inhibitory factor receptor, associated with a non-signalling CNTF binding receptor alpha component (CNTFR). This tripartite receptor has been shown to play important roles in the development of motor neurons, but the identity of the relevant ligand(s) is still not clearly established. Recently, we have identified two new ligands for the CNTF receptor complex.

View Article and Find Full Text PDF

The ciliary neurotrophic factor alpha-receptor (CNTFRalpha) is required for motoneuron survival during development, but the relevant ligand(s) has not been determined. One candidate is the heterodimer formed by cardiotrophin-like cytokine (CLC) and cytokine-like factor 1 (CLF). CLC/CLF binds to CNTFRalpha and enhances the survival of developing motoneurons in vitro; whether this novel trophic factor plays a role in neural development in vivo has not been tested.

View Article and Find Full Text PDF

Target innervation by specific neuronal populations involves still incompletely understood interactions between central and peripheral factors. We show that glial cell line-derived neurotrophic factor (GDNF), initially characterized for its role as a survival factor, is present early in the plexus of the developing forelimb and later in two muscles: the cutaneus maximus and latissimus dorsi. In the absence of GDNF signaling, motor neurons that normally innervate these muscles are mispositioned within the spinal cord and muscle invasion by their axons is dramatically reduced.

View Article and Find Full Text PDF