Publications by authors named "Beatrice Arezzini"

F-isoprostanes (F-IsoPs) have been considered markers of oxidative stress in various pulmonary diseases, but little is known about their possible role in pulmonary fibrosis. In this study, we have investigated the potential key role of F-IsoPs as markers and mediators of bleomycin (BLM)-induced pulmonary fibrosis in rats. During the in vivo study, plasma F-IsoPs showed a peak at 7 days and remained elevated for the entire experimental period.

View Article and Find Full Text PDF

Oxidative stress (OS) is important in the pathogenesis of autoimmune diseases such as rheumatoid arthritis (RA) and its experimental model--adjuvant arthritis (AA). Antioxidants are scarcely studied in autoimmunity, and future analyses are needed to assess its effects in ameliorating these diseases. Although there are studies about antioxidants effects on the course of RA, their role in combination therapy has not yet been studied in detail, especially on extra-articular manifestations of AA.

View Article and Find Full Text PDF

The phosphodiesterase 4 inhibitor roflumilast prevents bleomycin- (BLM-) induced lung fibrosis in animal models. However, its mechanism of action remains unknown. We investigated whether roflumilast N-oxide (RNO), the active metabolite of roflumilast, can modulate in vitro the oxidative effects of BLM on human lung fibroblasts (HLF).

View Article and Find Full Text PDF

Despite evidence supporting a potential role for F2-isoprostanes (F2-IsoP's) in liver fibrosis, their signaling mechanisms are poorly understood. We have previously provided evidence that F2-IsoP's stimulate hepatic stellate cell (HSC) proliferation and collagen hyperproduction by activation of a modified form of isoprostane receptor homologous to the classic thromboxane receptor (TP). In this paper, we examined which signal transduction pathways are set into motion by F2-IsoP's to exert their fibrogenic effects.

View Article and Find Full Text PDF

Scavenger Receptor B1 (SR-B1), also known as HDL receptor, is involved in cellular cholesterol uptake. Stratum corneum (SC), the outermost layer of the skin, is composed of more than 25% cholesterol. Several reports support the view that alteration of SC lipid composition may be the cause of impaired barrier function which gives rise to several skin diseases.

View Article and Find Full Text PDF

After a general introduction, the main pathways of ethanol metabolism (alcohol dehydrogenase, catalase, coupling of catalase with NADPH oxidase and microsomal ethanol-oxidizing system) are shortly reviewed. The cytochrome P(450) isoform (CYP2E1) specifically involved in ethanol oxidation is discussed. The acetaldehyde metabolism and the shift of the NAD/NADH ratio in the cellular environment (reductive stress) are stressed.

View Article and Find Full Text PDF

Cigarette smoke (CS) is a main risk factor in chronic obstructive pulmonary disease (COPD), but only 20% of smokers develop COPD, suggesting genetic predisposition. Animal studies have shown that C57BL/6J mice are sensitive to CS and develop emphysema, whereas Institute of Cancer Research (ICR) mice are not. To investigate the potential factors responsible for the different susceptibility of ICR and C57BL/6J mice to CS, we evaluated in alveolar macrophages (AMs) isolated from these strains of mice the possible mechanisms involved in the inflammatory and oxidative responses induced by CS.

View Article and Find Full Text PDF

An introduction to oxidative stress enlightening the spreading of interest in lipid peroxidation in the 60's and in the identification of cytotoxic aldehydes originating from it is given. The discovery of F2-isoprostanes as specific markers of oxidative stress is described. Isoprostanes are also agonists of important biological effects.

View Article and Find Full Text PDF

The Fe(3+) chelating ability of some curcumin glucosyl derivatives (Glc-H; Glc-OH; Glc-OCH(3)) is tested by means of UV and NMR study. The pK(a) values of the ligands and the overall stability constants of Fe(3+) and Ga(3+) complexes are evaluated from UV spectra. The only metal binding site of the ligand is the beta-diketo moiety in the keto-enolic form; the glucosyl moiety does not interact with metal ion but it contributes to the stability of metal/ligand 1:2 complexes by means of hydrophilic interactions.

View Article and Find Full Text PDF

A simple synthetic pathway to obtain glycosilated beta-diketo derivatives is proposed. These compounds show a good iron(III) affinity therefore we may suggest the use of their Fe(3+)-complexes as oral iron supplements in the treatment of anaemia. The glycosilated compounds (6-GlcH, 6-GlcOH and 6-GlcOCH(3)) are characterized by means of spectroscopic (UV, (1)H and (13)C NMR) and potentiometric techniques; they have a good water solubility, are kinetically stable in physiological condition (t(1/2)>100h) and show a low cytotoxicity also in high concentrations (IC(50)>400 microM).

View Article and Find Full Text PDF

There is a pressing need for the development of new therapies for emphysema, particularly as no existing treatment has been shown to reduce disease progression. Compounds with a potential activity against the pathological mechanisms postulated to play a role in the development and progression of emphysema should be tested in vivo in animal models of this disease. The choice of the model is of capital importance.

View Article and Find Full Text PDF

F2-isoprostanes are considered as the most reliable markers of oxidative stress and can be used to evaluate the oxidative status in a number of human pathologies. Besides being markers of oxidative stress, F2-isoprostanes proved to be mediators of important biological effects and would act through the activation of receptors analogous to those for thromboxane A2. In a previous work, we provided evidence that F(2)-isoprostanes, generated during carbon tetrachloride-induced hepatic fibrosis, mediate hepatic stellate cell (HSC) proliferation and collagen hyperproduction.

View Article and Find Full Text PDF

After a brief introduction to oxidative stress, the discovery of F(2)-isoprostanes as specific and reliable markers of oxidative stress is described. Isoprostanes are also agonists of important biological effects. Since a relation between oxidative stress and collagen hyperproduction has been previously suggested and since lipid peroxidation products have been proposed as possible mediators of liver fibrosis, we investigated whether collagen synthesis is induced by F(2)-isoprostanes the most proximal products of lipid peroxidation.

View Article and Find Full Text PDF

F(2)-isoprostanes are not just markers of oxidative stress. The discovery of F(2)-isoprostanes (F(2)-IsoPs) as specific and reliable markers of oxidative stress in vivo is briefly summarized here. F(2)-IsoPs are also agonists of important biological effects, such as the vasoconstriction of renal glomerular arterioles, the retinal vessel, and the brain microcirculature.

View Article and Find Full Text PDF

Carbon tetrachloride (CCl4)-induced hepatic fibrosis has been considered to be linked to oxidative stress and mediated by aldehydic lipid peroxidation products. In the present study, we investigated whether collagen synthesis is induced by F2-isoprostanes, the most proximal products of lipid peroxidation and known mediators of important biological effects. By contrast with aldehydes, F2-isoprostanes act through receptors able to elicit definite signal transduction pathways.

View Article and Find Full Text PDF

The role of iron in initiating liver fibrosis in iron overload diseases is not clearly established. Partly, this is due to the lack of suitable animal models that can produce the full liver pathology seen in genetic hemochromatosis. Recent advances in this field have demonstrated that iron may be interacting with other potential liver-damaging agents.

View Article and Find Full Text PDF

Various studies on hepatic fibrosis occurring in iron overload suggest that excess of tissue iron may be involved in the stimulation of collagen synthesis. Anyway, up to date, direct evidence on the role of iron in hepatic fibrosis is lacking. Moreover, it is not clear whether iron acts as direct initiator of fibrogenesis or as mediator of hepatocellular necrosis.

View Article and Find Full Text PDF

The parathyroid hormone-related protein (PTHrp), structurally similar to the parathyroid hormone (PTH) in its NH(2)-terminal part, was first identified as a tumour-derived peptide responsible for a paraneoplastic syndrome known as humoral hypercalcemia of malignancy. The PTHrp gene is expressed not only in cancer but also in normal tissues during adult and/or fetal life, where it plays predominantly paracrine and/or autocrine roles. In the skin PTHrp produced by keratinocytes acts on fibroblasts by complex cooperative circuits involving cytokines and growth factors.

View Article and Find Full Text PDF