Background: There are limited data on the physical effects of androgen deprivation therapy (ADT) for prostate cancer (PC), and on the relationships of such measures of adiposity and strength to cardiovascular outcomes.
Objectives: The primary objective of this study was to evaluate the relationships of measures of adiposity and strength to cardiovascular outcomes (cardiovascular death, myocardial infarction, stroke, heart failure, arterial revascularization, peripheral arterial disease, and venous thromboembolism) in patients with PC. A secondary objective was to characterize the relationships between ADT use and 12-month changes in these physical measures.
Boron-incorporated nanosized HB-SUZ-4 showcased a noteworthy 24% boost in dimethyl ether carbonylation, with an elevation in methyl acetate selectivity from 91.8% to 96.0%.
View Article and Find Full Text PDFBackground: Targeted nanoparticles (NPs) are aimed at improving clinical outcomes by enhancing the diagnostic and therapeutic efficacy of drugs in the treatment of Alzheimer's disease (AD).
Methods: Curcumin (CUR)-loaded poly-lactic-co-glycolic acid (PLGA) NPs (CNPs) were produced to demonstrate a prolonged release and successfully embedded into 3D printed sodium alginate (SA)/gelatin (GEL) scaffolds that can dissolve rapidly sublingually. Characterization and in vitro activity of the NPs and scaffolds were evaluated.
J Cancer Res Clin Oncol
April 2024
Purpose: Renal cell carcinoma is an aggressive disease with a high mortality rate. Management has drastically changed with the new era of immunotherapy, and novel strategies are being developed; however, identifying systemic treatments is still challenging. This paper presents an update of the expert panel consensus from the Latin American Cooperative Oncology Group and the Latin American Renal Cancer Group on advanced renal cell carcinoma management in Brazil.
View Article and Find Full Text PDFMordenite (MOR) zeolite, an important industrial catalyst exists in two, isostructural variants defined by their port-size, small and large-port. Here we show for the first time how a systematic, single-parameter variation influences the synthesis out-come on the final MOR material leading to distinctly different catalysts. The cation identity has a direct impact on the synthesis mechanism with potassium cations generating the more constrained, small-port MOR variant compared to the large-port obtained with sodium cations.
View Article and Find Full Text PDFThe direct activation of methane to methanol (MTM) proceeds through a chemical-looping process over Cu-oxo sites in zeolites. Herein, we extend the overall understanding of oxidation reactions over metal-oxo sites and C-H activation reactions by pinpointing the evolution of Cu species during reduction. To do so, a set of temperature-programmed reduction experiments were performed with CH, CH and CO.
View Article and Find Full Text PDFThis study addresses rural Guatemala's poor maternal health and HIV status by culturally adapting an evidence-based HIV intervention, SEPA (Self-Care, Education, Prevention, Self-Care), to extend the capacity of comadronas (Mayan birth attendants) as HIV prevention providers. This mixed-method study examined the acceptability, suitability, and feasibility of SEPA presented to traditional elder and a younger cohort of comadronas over three sessions. Outcome variables were reported as mean scores.
View Article and Find Full Text PDFCu-zeolites are found to activate the C-H bond of ethane already at 150 °C in a cyclic protocol and form ethylene with a high selectivity. Both the zeolite topology and Cu content are found to impact the ethylene yield. Ethylene adsorption studies with FT-IR, demonstrate that oligomerization of ethylene occurs over protonic zeolites, while this reaction does not occur over Cu-zeolites.
View Article and Find Full Text PDFWe have monitored the regeneration of H-ZSM-5 time-resolved powder X-Ray diffraction (PXRD) coupled with mass spectroscopy (MS). Parametric Rietveld refinements and calculation of the extra-framework electronic density by differential Fourier maps analysis provide details on the mode of coke removal combined with the corresponding sub-unit cell changes of the zeolite structure. It is clear that the coke removal is a complex process that occurs in at least two steps; a thermal decomposition followed by oxidation.
View Article and Find Full Text PDFRev Clin Esp (Barc)
February 2022
Introduction: There is currently a degree of divergence among the main clinical practice guidelines on the management of risk factors for peripheral arterial disease (PAD). This project aims to gain understanding of the management of PAD risk factors in clinical practice and to reach a multidisciplinary consensus on the strategies to be followed in order to optimize its identification, treatment, and follow-up.
Methodology: A multidisciplinary consensus following the Delphi methodology.
The role of platinum on the room temperature NOx storage mechanism and the NOx desorption behavior of ceria was investigated by combining online FT-IR gas-phase analysis with in situ Raman and UV-vis spectroscopy. The type of pretreatment, leading to the presence of different platinum states (Pt0, and mixed Pt0/Pt2+), is shown to have a major effect on the NOx storage and desorption properties. Upon loading of ceria with platinum (1 wt%), NOx storage capacities decrease except for reductively pretreated Pt/CeO2, enabling new reaction pathways via activation of gas-phase oxygen.
View Article and Find Full Text PDFCu-exchanged zeolites have been shown to possess Cu-oxo species active towards the direct methane to methanol (DMTM) conversion, carried out through a chemical-looping approach. Different Cu-zeolites have been investigated for the DMTM process, with Cu-mordenite (Cu-MOR) being among the most active. In this context, an accurate determination of the local structure and nuclearity of selective Cu-oxo species responsible for an efficient DMTM conversion still represents an ongoing challenge for characterization methods, including synchrotron-based X-ray absorption spectroscopy (XAS).
View Article and Find Full Text PDFThe direct conversion of methane to methanol (MTM) is a reaction that has the potential to disrupt a great part of the synthesis gas-derived chemical industry. However, despite many decades of research, active enough catalysts and suitable processes for industrial application are still not available. Recently, several copper-exchanged zeolites have shown considerable activity and selectivity in the direct MTM reaction.
View Article and Find Full Text PDFThe methanol-to-hydrocarbons (MTH) reaction represents a versatile, industrially viable alternative to crude-oil based processes for the production of chemicals and fuels. In the MTH reaction, the shape selectivity of acidic zeolites is exploited to direct the synthesis towards the desired product. However, due to unavoidable side reactions occurring under processing conditions, all MTH catalysts suffer deactivation due to coke formation.
View Article and Find Full Text PDFWe review the structural chemistry and reactivity of copper-exchanged molecular sieves with chabazite (CHA) topology, as an industrially applied catalyst in ammonia mediated reduction of harmful nitrogen oxides (NH3-SCR) and as a general model system for red-ox active materials (also the recent results in the direct conversion of methane to methanol are considered). Notwithstanding the apparent structural simplicity of the material, a crystalline zeolite with only one crystallographically independent T site, the Cu-SSZ-13 catalyst reveals a high degree of complexity that has been decrypted by state of the art characterization tools. From the reviewed data, the following important aspects in the understanding of the Cu-SSZ-13 catalyst clearly emerged: (i) the structural dynamics of the Cu-species require precise control of the environmental conditions during activation and characterization; (ii) the availability of a large library of well-defined catalysts with different Si/Al and Cu/Al compositional ratios is key in unravelling the red-ox properties of the active Cu sites; (iii) a multi-technique approach is required, combining complementary techniques able to provide independent structural, electronic and vibrational information; (iv) synchrotron radiation based techniques (EXAFS, XANES, XES and time-resolved powder XRD) played a relevant role; (v) operando methodology (possibly supported by advanced chemometric approaches) is essential in obtaining structure-reactivity relations; (vi) the support of theoretical studies has been indispensable for the interpretation of the experimental output from characterization and for a critical assessment of mechanistic models.
View Article and Find Full Text PDFIn this work, we show the potentiality of operando FTIR spectroscopy to follow the formation of Cu -(N,O) species on Cu exchanged chabazite zeolites (Cu-CHA), active for the selective catalytic reduction of NO with NH (NH -SCR). In particular, we investigated the reaction of NO and O at low temperature (200 and 50 °C) on a series of Cu-CHA zeolites with different composition (Si/Al and Cu/Al ratios), to investigate the nature of the formed copper nitrates, which have been proposed to be key intermediates in the oxidation part of the SCR cycle. Our results show that chelating bidentate nitrates are the main structures formed at 200 °C.
View Article and Find Full Text PDFThe deactivation of zeolite catalyst H-ZSM-5 by coking during the conversion of methanol to hydrocarbons was monitored by high-energy space- and time-resolved operando X-ray diffraction (XRD) . Space resolution was achieved by continuous scanning along the axial length of a capillary fixed bed reactor with a time resolution of 10 s per scan. Using real structural parameters obtained from XRD, we can track the development of coke at different points in the reactor and link this to a kinetic model to correlate catalyst deactivation with structural changes occurring in the material.
View Article and Find Full Text PDFThe small pore Cu-CHA zeolite is attracting increasing attention as a versatile platform to design novel single-site catalysts for deNO applications and for the direct conversion of methane to methanol. Understanding at the atomic scale how the catalyst composition influences the Cu-species formed during thermal activation is a key step to unveil the relevant composition-activity relationships. Herein, we explore by XAS the impact of Cu-CHA catalyst composition on temperature-dependent Cu-speciation and reducibility.
View Article and Find Full Text PDFCu-exchanged zeolites possess active sites that are able to cleave the C-H bond of methane at temperatures ≤200 °C, enabling its selective partial oxidation to methanol. Herein we explore this process over Cu-SSZ-13 materials. We combine activity tests and X-ray absorption spectroscopy (XAS) to thoroughly investigate the influence of reaction parameters and material elemental composition on the productivity and Cu speciation during the key process steps.
View Article and Find Full Text PDFIn the past few decades, advances in colloidal nanoparticle synthesis have created new possibilities for the preparation of supported model catalysts. However, effective removal of surfactants is a prerequisite to evaluate the catalytic properties of these catalysts in any reaction of interest. Here we report on the colloidal preparation of surfactant-free Ni/AlO model catalysts.
View Article and Find Full Text PDFA variety of synthetic procedures have been used to obtain zeolite ZSM-23 (MTT) catalysts with crystallite sizes ranging from the micrometer to nanometer scale. When the acidic zeolite is used as a catalyst for the methanol to hydrocarbon (MTH) reaction, the catalytic lifetime is dramatically influenced by the crystallite shape and size.
View Article and Find Full Text PDFZeolites representing seven different topologies were subjected to life-time assessment studies as methanol to hydrocarbons (MTH) catalysts at 400 °C, P(MeOH) = 13 kPa and P(tot) = 100 kPa. The following topologies were studied: ZSM-22 (TON), ZSM-23 (MTT), IM-5 (IMF), ITQ-13 (ITH), ZSM-5 (MFI), mordenite (MOR) and beta (BEA). Two experimental approaches were used.
View Article and Find Full Text PDFPurpose: To report a case of bilateral diffuse uveal melanocytic proliferation associated with renal carcinoma and to illustrate the importance of ancillary examinations to early diagnosis and treatment.
Design: Clinical case report.
Methods: A 56-year-old man reported a 3-day history of visual impairment and scotoma in the right eye.
The small-pore Cu-CHA zeolite is today the object of intensive research efforts to rationalize its outstanding performance in the NH3-assisted selective catalytic reduction (SCR) of harmful nitrogen oxides and to unveil the SCR mechanism. Herein we exploit operando X-ray spectroscopies to monitor the Cu-CHA catalyst in action during NH3-SCR in the 150-400 °C range, targeting Cu oxidation state, mobility, and preferential N or O ligation as a function of reaction temperature. By combining operando XANES, EXAFS, and vtc-XES, we unambiguously identify two distinct regimes for the atomic-scale behavior of Cu active-sites.
View Article and Find Full Text PDFCu-SSZ-13 is a highly active NH-SCR catalyst for the abatement of harmful nitrogen oxides (NO , = 1, 2) from the exhausts of lean-burn engines. The study of Cu-speciation occurring upon thermal dehydration is a key step for the understanding of the enhanced catalytic properties of this material and for identifying the SCR active sites and their redox capability. Herein, we combined FTIR, X-ray absorption (XAS) and emission (XES) spectroscopies with DFT computational analysis to elucidate the nature and location of the most abundant Cu sites in the activated catalyst.
View Article and Find Full Text PDF