Heavy metals such as zinc cannot be degraded by microorganisms and form long contaminant plumes in groundwater. Conventional methods for remediating heavy metal-contaminated sites are for example excavation and pump-and-treat, which is expensive and requires very long operation times. This induced interest in new technologies such as in situ adsorption barriers for immobilization of heavy metal contamination.
View Article and Find Full Text PDFRemediation of heavy metal-contaminated aquifers is a challenging process because they cannot be degraded by microorganisms. Together with the usually limited effectiveness of technologies applied today for treatment of heavy metal contaminated groundwater, this creates a need for new remediation technologies. We therefore developed a new treatment, in which permeable adsorption barriers are established in situ in aquifers by the injection of colloidal iron oxides.
View Article and Find Full Text PDFAcidithiobacillus ferrooxidans is a chemolithoautotrophic, mesophilic Gram-negative bacterium able to oxidize ferrous iron, sulfur, and metal sulfides. It forms monolayer biofilms where extracellular polymeric substances are essential for cell attachment and metal sulfide leaching. High-throughput proteomics has been applied to study the early process of biofilm formation on pyrite by At.
View Article and Find Full Text PDF