Publications by authors named "Beate Eyrich"

Phosphorylation of proteins is one of the most prominent PTMs and for instance a key regulator of signal transduction. In order to improve our understanding of cellular phosphorylation events, considerable effort has been devoted to improving the analysis of phosphorylation by MS-based proteomics. Different enrichment strategies for phosphorylated peptides/proteins, such as immunoaffinity chromatography (IMAC) or titanium dioxide, have been established and constantly optimized for subsequent MS analysis.

View Article and Find Full Text PDF

Mitochondria import a large number of nuclear-encoded proteins via membrane-bound transport machineries; however, little is known about regulation of the preprotein translocases. We report that the main protein entry gate of mitochondria, the translocase of the outer membrane (TOM complex), is phosphorylated by cytosolic kinases-in particular, casein kinase 2 (CK2) and protein kinase A (PKA). CK2 promotes biogenesis of the TOM complex by phosphorylation of two key components, the receptor Tom22 and the import protein Mim1, which in turn are required for import of further Tom proteins.

View Article and Find Full Text PDF

Mitochondria are crucial for numerous cellular processes, yet the regulation of mitochondrial functions is only understood in part. Recent studies indicated that the number of mitochondrial phosphoproteins is higher than expected; however, the effect of reversible phosphorylation on mitochondrial structure and function has only been defined in a few cases. It is thus crucial to determine authentic protein phosphorylation sites from highly purified mitochondria in a genetically tractable organism.

View Article and Find Full Text PDF