Runner's high is a euphoric emotional state occurring during and post-physical exercise. Although previous data indicate endocannabinoids' involvement in animal runner's high, their role in human runner's high remains to be established. We investigated runner's high in healthy humans assessing mood and plasma endocannabinoid concentration changes pre- and post a 60 min outdoor run, considering sex (8 females/8 males), running frequency (4 occasional/12 regular runners) and age (median split 36 years).
View Article and Find Full Text PDFBackground: Using accurate, sensitive, reproducible and efficient in vivo cutaneous pharmacokinetics (PK)-based bioequivalence (BE) approaches can promote the development of topical generic drug products. A clinical dermal open flow microperfusion (dOFM) study has previously demonstrated the BE of topical drug products containing a hydrophilic drug. However, the utility of dOFM to evaluate the topical BE of drug products containing moderately lipophilic drugs, more representative of most topical drugs, has not yet been established.
View Article and Find Full Text PDFEndogenous endocannabinoids such as N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) are involved in the patho-biochemistry of several neurological diseases and have been associated with mood-enhancing phenomena. Although they have been intensively studied in recent years, accurate and reliable quantification of these analytes in cerebral interstitial fluid (cISF) to elucidate their neuro-modulatory role is still challenging. Moreover, there is a need for an analytical method that can analyze plasma in addition to cISF and is thus able to address research questions in both preclinical and clinical studies.
View Article and Find Full Text PDFThe increasing relevance of improved therapeutic monoclonal antibodies (mAbs) to treat neurodegenerative diseases has strengthened the need to reliably measure their brain pharmacokinetic (PK) profiles. The aim of this study was, therefore, to absolutely quantify the therapeutic antibody ocrelizumab (OCR) as a model antibody in mouse brain interstitial fluid (ISF), and to record its PK profile by using cerebral open flow microperfusion (cOFM). Further, to monitor the blood-brain barrier (BBB) integrity using an endogenous antibody with a similar molecular size as OCR.
View Article and Find Full Text PDFBackground: Orthotopic xenograft studies promote the development of targeted/personalized therapies to improve the still poor life expectancy of glioblastoma patients.
New Method: We implemented an atraumatic access to glioblastoma with cerebral Open Flow Microperfusion (cOFM) by implantation of xenograft cells in rat brain with intact blood brain barrier (BBB) and subsequent development of a xenograft glioblastoma at the interface between the cOFM probe and surrounding brain tissue. Human glioma U87MG cells were implanted at a well-defined position into immunodeficient Rowett nude rat´s brain via cOFM (cOFM group) and syringe (control group).
Hormone-sensitive lipase (HSL) plays a crucial role in intracellular lipolysis, and loss of HSL leads to diacylglycerol (DAG) accumulation, reduced FA mobilization, and impaired PPARγ signaling. Hsl knockout mice exhibit adipose tissue inflammation, but the underlying mechanisms are still not clear. Here, we investigated if and to what extent HSL loss contributes to endoplasmic reticulum (ER) stress and adipose tissue inflammation in Hsl knockout mice.
View Article and Find Full Text PDF(1) The cardio-reno-metabolic benefits of the SGLT2 inhibitors canagliflozin (cana), dapagliflozin (dapa), ertugliflozin (ertu), and empagliflozin (empa) have been demonstrated, but it remains unclear whether they exert different off-target effects influencing clinical profiles. (2) We aimed to investigate the effects of SGLT2 inhibitors on mitochondrial function, cellular glucose-uptake (GU), and metabolic pathways in human-umbilical-vein endothelial cells (HUVECs). (3) At 100 µM (supra-pharmacological concentration), cana decreased ECAR by 45% and inhibited GU (IC5o: 14 µM).
View Article and Find Full Text PDFContext: The effect of liraglutide in C-peptide-positive (C-pos) type 1 diabetes (T1D) patients during hypoglycemia remains unclear.
Objective: To investigate the effect of a 12-week liraglutide treatment on the body glucose fluxes during a hypoglycemic clamp in C-pos T1D patients and its impact on the alpha- and beta-cell responses during hypoglycemia.
Design: This was a randomized, double-blind, crossover study.
Methods for glucagon analysis suffered in the past from lack of specificity and a narrow sensitivity range, which has led to inaccurate results and to the suggestion that type 1 diabetes (T1D) and type 2 diabetes (T2D) patients have elevated fasting glucagon levels. However, the availability of more specific and more sensitive methods to detect intact glucagon has shown that actual glucagon levels are lower than previously assumed. This study aimed to characterize fasting plasma glucagon levels in healthy individuals and T1D and T2D patients with two different glucagon assays.
View Article and Find Full Text PDFObjective: To implement OFM-recirculation and OFM-suction capable of direct and absolute in-vivo quantification of albumin in the ISF of pigs.
Approach: OFM-recirculation and OFM-suction were used to collect ISF in-vivo in pigs and lymph was collected from the same pigs after OFM sampling. Blood was collected before and after OFM sampling, plasma was isolated and mean albumin plasma concentrations per pig were used to yield albumin ISF-to-plasma ratios.
Purpose: Dermal open flow microperfusion (dOFM) has previously demonstrated its utility to assess the bioequivalence (BE) of topical drug products in a clinical study. We aimed to characterize the sources of variability in the dermal pharmacokinetic data from that study.
Methods: Exploratory statistical analyses were performed with multivariate data from a clinical dOFM-study in 20 healthy adults evaluating the BE, or lack thereof, of Austrian test (T) and U.
Patients with previous diabetic foot ulcer are prone to re-ulceration and (re)amputation, to various comorbidities, have significantly impaired quality of life and increased mortality. We aimed to evaluate the risk of foot related complications and mortality in a high-risk population of patients with healed diabetic foot syndrome over a decade. 91 patients with recently healed diabetic foot ulcer were invited for follow-up at 1, 6 and 11 years after inclusion.
View Article and Find Full Text PDFContext: Complete loss of β-cell function in patients with type 1 diabetes mellitus (T1DM) may lead to an increased risk of severe hypoglycemia.
Objective: We aimed to determine the impact of C-peptide status on glucagon response and endogenous glucose production (EGP) during hypoglycemia in patients with T1DM.
Design And Setting: We conducted an open, comparative trial.
Objective: Pharmacokinetic and pharmacodynamic studies of topically applied drugs are commonly performed by sampling of interstitial fluid with dermal open flow microperfusion and subsequent analysis of the samples. However, the reliability of results from the measured concentration-time profile of the penetrating drug suffers from highly variable skin permeability to topically applied drugs that is mainly caused by inter- and intra-subject variations of the stratum corneum. Thus, statistically significant results can only be achieved by performing high numbers of experiments.
View Article and Find Full Text PDFBackground: Restoration of the physiologic hepatic-to-peripheral insulin gradient may be achieved by either portal vein administration or altering insulin structure to increase hepatic specificity or restrict peripheral access. Basal insulin peglispro (BIL) is a novel, PEGylated basal insulin with a flat pharmacokinetic and glucodynamic profile and altered hepatic-to-peripheral action gradient. We hypothesized reduced BIL exposure in peripheral tissues explains the latter, and in this study assessed the adipose tissue interstitial fluid (ISF) concentrations of BIL compared with human insulin (HI).
View Article and Find Full Text PDFPurpose: To evaluate the kinetics of topically applied clobetasol-17-propionate (CP-17) in lesional and non-lesional psoriatic skin when released from a commercially available low-strength cream using in vivo dermal open-flow microperfusion (dOFM).
Methods: Twelve patients received Dermovate® cream (CP-17, 0.05%) on small lesional and non-lesional skin test sites for 14 days, once daily.
We mimicked the effect of sphingomyelinase activity on lipid mixtures of palmitoyl-oleoyl-phosphatidylcholine, sphingomyelin, ceramide, and 10 mol % cholesterol. Using x-ray diffraction experiments in combination with osmotic stress we found, in agreement with previous studies, that ceramide induces a coexistence of L(α) and L(β) domains. A detailed structural analysis of the coexisting domains demonstrated an increase of lipid packing density and membrane thickness in the L(α) domains upon increasing overall ceramide levels.
View Article and Find Full Text PDFWe applied x-ray diffraction, calorimetry, and infrared spectroscopy to lipid mixtures of palmitoyl-oleoyl phosphatidylcholine, sphingomyelin, and ceramide. This combination of experimental techniques allowed us to probe the stability and structural properties of coexisting lipid domains without resorting to any molecular probes. In particular, we found unstable microscopic domains (compositional/phase fluctuations) in the absence of ceramide, and macroscopically separated fluid and gel phases upon addition of ceramide.
View Article and Find Full Text PDFJ Mol Recognit
September 2011
The present study introduces atomic force microscopy (AFM) as a tool for characterization of marine gel network and marine biopolymers self-assembly, not accessible by other techniques. AFM imaging of marine gel samples collected in summers 2003 and 2004 in the northern Adriatic Sea provided insight into molecular organization of gel network and associations between polysaccharide fibrils in the network. Initial stages of biopolymers self-assembly were visualized by AFM in a phytoplankton bloom experiment performed in the same aquatorium.
View Article and Find Full Text PDFSphingolipid signaling plays an important, yet not fully understood, role in diverse aspects of cellular life. Sphingomyelinase is a major enzyme in these signaling pathways, catalyzing hydrolysis of sphingomyelin to ceramide and phosphocholine. To address the related membrane dynamical structural changes and their feedback to enzyme activity, we have studied the effect of enzymatically generated ceramide in situ on the properties of a well-defined lipid model system.
View Article and Find Full Text PDFThe currently accepted model of biological membranes involves a heterogeneous, highly dynamic organization, where certain lipids and proteins associate to form cooperative platforms ("rafts") for cellular signaling or transport processes. Ceramides, a lipid species occurring under conditions of cellular stress and apoptosis, are considered to stabilize these platforms, thus modulating cellular function. The present study focuses on a previously unrecognized effect of ceramide generation.
View Article and Find Full Text PDF