This work reports on the chiral structure fluctuations of peptide clusters at the early stages of aggregation in a coarse-grained peptide model. Our model reproduces a variety of aggregate structures, from disordered to crystal-like, that are observed experimentally. Unexpectedly, our molecular dynamics simulations showed that the small peptide cluster undergoes chiral structure fluctuations although the underlying implicit solvent model does not assume the chirality of peptides.
View Article and Find Full Text PDFThe lipid bilayer is a flexible matrix that is able to adapt in response to the perturbation induced by inclusions, such as peptides and proteins. Here we use molecular dynamics simulations with a coarse-grained model to investigate the effect of a helical inclusion on a lipid bilayer in the liquid disordered phase. We show that the helical inclusion induces a collective tilt of acyl chains, with a small, yet unambiguous difference between a right- and a left-handed inclusion.
View Article and Find Full Text PDFPeptides can aggregate into ordered structures with different morphologies. The aggregation mechanism and evolving structures are the subject of intense research. In this paper we have used molecular dynamics to examine the sequence-dependence of aggregation kinetics for three short peptides: octaalanine (Ala8), octaasparagine (Asn8), and the heptapeptide GNNQQNY (abbreviated as GNN).
View Article and Find Full Text PDFIntroduction: Intensive animal production causes numerous problems. Facilities connected with animal maintenance not only cause environmental pollution, but also pose a great sanitary and epidemiological threat. Long-term use of antibiotics in animal production lead animal-borne microorganisms to develop multiple resistance mechanisms, transferred to the typical environmental bacteria.
View Article and Find Full Text PDF