Bivalves are an extraordinary class of animals in which species with a doubly uniparental inheritance (DUI) of mitochondrial DNA have been described. DUI is characterized as a mitochondrial homoplasmy of females and heteroplasmy of male individuals where F-type mitogenomes are passed to the progeny with mother egg cells and divergent M-type mitogenomes are inherited with fathers sperm cells. However, in most cases only male individuals retain divergent mitogenome inherited with spermatozoa.
View Article and Find Full Text PDFIn 2020, the first male-type mitochondrial genome from the clam was published. Apart from the unusual doubly uniparental inheritance of mtDNA, scientists observed a unique (over 4k bp long) extension in the middle of the gene. We have attempted to replicate these data by NGS DNA sequencing and explore further the expression of the long gene.
View Article and Find Full Text PDFTwo genetically different mitochondrial haplogroups of Brachidontes pharaonis (p-distance 6.8%) have been identified in the Mediterranean Sea. This hinted at a possible presence of doubly uniparental inheritance in this species.
View Article and Find Full Text PDFDoubly uniparental inheritance (DUI) of mitochondrial DNA is a rare phenomenon occurring in some freshwater and marine bivalves and is usually characterized by the mitochondrial heteroplasmy of male individuals. Previous research on freshwater Unionida mussels showed that hermaphroditic species do not have DUI even if their closest gonochoristic counterparts do. No records showing DUI in a hermaphrodite have ever been reported.
View Article and Find Full Text PDFAnimal mitochondria are usually inherited through the maternal lineage. The exceptional system allowing fathers to transmit their mitochondria to the offspring exists in some bivalves. Its taxonomic spread is poorly understood and new mitogenomic data are needed to fill the gap.
View Article and Find Full Text PDFBackground: Animal mitochondrial genomes typically encode 37 genes: 13 proteins, 22 tRNAs and two rRNAs. However, many species represent exceptions to that rule. Bivalvia along with Nematoda and Platyhelminthes are often suspected to fully or partially lack the ATP synthase subunit 8 () gene.
View Article and Find Full Text PDFDoubly uniparental inheritance of mitochondria (DUI) is best known in the blue mussel . Under this model, two types of mitochondrial DNA exist: female type (F), transmitted from females to offspring of both genders, and male type (M), transmitted exclusively from males to sons. The mitogenomes are usually highly divergent, but an occasional replacement of a typical M genome by a particular F genome has been postulated to explain reduction of this divergence.
View Article and Find Full Text PDFThe controversy surrounding the origin of antitropical distribution of mussels and the taxonomic status of southern hemisphere populations remain unsolved, despite the efforts. One of the limiting factors remains the lack of the complete sequences of the representative mitochondrial genomes which would allow their proper comparison with the relatively well-represented northern hemisphere congeneric mussels. To fill this gap we sequenced the representative maternal (F) genome of a native Chilean mussel.
View Article and Find Full Text PDFMitochondrial DNA A DNA Mapp Seq Anal
May 2016
Doubly uniparental inheritance (DUI) results in the existence of two gender-specific, divergent mtDNA lineages within a single species. Under DUI, the female genome (F) is transmitted from mothers to the whole offspring, and the male genome (M) is transmitted exclusively from fathers to sons. This system was first described in a marine mussels Mytilus edulis inhabiting European coastal waters, over a decade ago.
View Article and Find Full Text PDFMitochondrial DNA A DNA Mapp Seq Anal
September 2016
Several bivalve species, including marine mussels Mytilus are atypical in having two gender-specific and highly divergent mtDNA genomes. This peculiar genetic system allows not only the recombination to occur but also facilitates its detection. Previous reports associated the existence of mosaic recombinant haplotypes with the switch of their transmission route.
View Article and Find Full Text PDFThe doubly uniparental inheritance system allows for the use of two independent mitochondrial genomes for population history investigations. Under this system, two lineages of mitochondrial DNA (mtDNA) exist and males are typically heteroplasmic, having the additional, usually divergent, mitochondrial genome inherited from their male parent. This additional mtDNA typically evolves faster, potentially allowing for insight into more recent events in population history.
View Article and Find Full Text PDFThe unusual mode of mitochondrial DNA inheritance, with two separate: maternal (F) and paternal (M) lineages, gives unique opportunities to study the evolution of the mitochondrial genome. This system was first discovered in the marine mussels Mytilus. The three related species: Mytilus edulis, Mytilus galloprovincialis and Mytilus trossulus form a complex in which the divergence of M and F lineages pre-dates the speciation.
View Article and Find Full Text PDFThe existence of mtDNA recombination in animals has been confirmed by several case studies. Still, for Mytilus mussels possessing two divergent mitochondrial genomes (M and F), which can recombine, no recombination between coding sequences of highly diverged M and F genomes has been shown. Based on the full sequences of both genomes, it has been suggested that particularly low divergence observed within the mitochondrial nad3 gene of the Mytilus galloprovincialis mussel may be caused by its exceptionally low evolutionary rate.
View Article and Find Full Text PDFMitochondrial DNA was long believed to be purely clonal and free from recombination. Major phylogenetic studies still depend on such assumptions. The peculiar genetic system of marine mussels Mytilus in which two divergent mitochondrial genomes exist provides a unique opportunity to study mtDNA recombination.
View Article and Find Full Text PDF