Mesenchymal stem or stromal cells (MSCs) act on different components of the immune response including macrophages (MΦs). Therefore this study has been committed to explore how MSCs may modify the effect of MΦ polarization upon an inductive environment using mouse bone marrow (BM)-derived "naïve", unpolarized MΦs. Phagocytosis of various MΦ subtypes was different since M1 and M2b showed poorer, while M2a higher rate of phagocytosis.
View Article and Find Full Text PDFMesenchymal stems or stromal cells (MSCs) are rare multipotent cells with potent regenerative and immunomodulatory properties. Microglial cells (MGs) are specialized tissue macrophages of the central nervous system (CNS) that continuously survey their environment with highly motile extensions. Recently, several studies have shown that MSCs are capable of reprogramming microglia into an "M2-like" phenotype characterized by increased phagocytic activity and upregulated expression of anti-inflammatory mediators in vitro.
View Article and Find Full Text PDFBone marrow derived mesenchymal stromal cells (MSCs) have recently been implicated as one source of the tumor-associated stroma, which plays essential role in regulating tumor progression. In spite of the intensive research, the individual factors in MSCs controlling tumor progression have not been adequately defined. In the present study we have examined the role of galectin-1 (Gal-1), a protein highly expressed in tumors with poor prognosis, in MSCs in the course of tumor development.
View Article and Find Full Text PDFIn recent years it has become clear that mesenchymal stem or stromal cells (MSCs) are capable of modulating inflammatory and immune responses through interaction with a wide variety of cells. Whereas several studies indicated that PGE2 is one of the chief soluble mediators involved in these processes, here we investigated prostaglandin E2 (PGE2) production of murine bone marrow- (BM-) and adipose tissue- (Ad-) derived MSCs stimulated with pro-inflammatory cytokines TNF-α and IFN-γ, or co-cultured with ConA-induced T-cell blasts. We found that both MSC populations are able to produce high amounts of PGE2 in MSC/activated T-cell co-cultures.
View Article and Find Full Text PDFAnalysis of genomic sequences has clearly shown that the genomic differences among species do not explain the diversity of life. The genetic code itself serves as only a part of the dynamic complexity that results in the temporal and spatial changes in cell phenotypes during development. It has been concluded that the phenotype of a cell and of the organism as a whole is more influenced by environmentally-induced changes in gene activity than had been previously thought.
View Article and Find Full Text PDFAlthough mesenchymal stem cells (MSCs) of distinct tissue origin have a large number of similarities and differences, it has not been determined so far whether tissue-resident MSCs are the progenies of one ancestor cell lineage or the results of parallel cell developmental events. Here we compared the expression levels of 177 genes in murine MSCs derived from adult and juvenile bone marrow and adult adipose tissue, as well as juvenile spleen, thymus, and aorta wall by quantitative real-time polymerase chain reaction and the results were partially validated at protein level. All MSC lines uniformly expressed a large set of genes including well-known mesenchymal markers, such as α-smooth muscle actin, collagen type I α-chain, GATA6, Mohawk, and vimentin.
View Article and Find Full Text PDFMesenchymal stem or multipotent stromal cells (MSCs) have been implicated in tissue maintenance and repair and regulating immune effector cells through different mechanisms. These functions in mouse were primarily described for bone marrow (BM)-derived MSCs. To learn more about MSCs of different tissue origin, we compared the immunophenotype, differentiation ability to adipocyte and bone and immunomodulatory activity of MSCs isolated from BM, spleen, thymus and aorta wall of 14-day-old C57Bl/6 mice.
View Article and Find Full Text PDF