Cryogenic confocal microscopy is a powerful method for studying solid state quantum devices such as single photon sources and optically controlled qubits. While the vast majority of such studies have been conducted at temperatures of a few Kelvin, experiments involving fragile quantum effects often require lower operating temperatures. To also allow for electrical dynamic control, microwave connectivity is required.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2023
This paper explores the optical properties of an exfoliated MoSe monolayer implanted with Cr ions, accelerated to 25 eV. Photoluminescence of the implanted MoSe reveals an emission line from Cr-related defects that is present only under weak electron doping. Unlike band-to-band transition, the Cr-introduced emission is characterized by nonzero activation energy, long lifetimes, and weak response to the magnetic field.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2019
We measure the evolution of low temperature photoluminescence in a WSe monolayer with increasing electron concentration level. By comparing non-resonant and resonant laser excitation, we find that the formation of negative trions is facilitated by very efficient phonon emission. The most prominent line in photolumienscence spectra in the intermediate range of carrier concentrations (below [Formula: see text] cm) is found to be 66 meV below the bright negative trion.
View Article and Find Full Text PDFAn absolute scale match between experiment and simulation in atomic-resolution off-axis electron holography is demonstrated, with unknown experimental parameters determined directly from the recorded electron wave function using an automated numerical algorithm. We show that the local thickness and tilt of a pristine thin WSe_{2} flake can be measured uniquely, whereas some electron optical aberrations cannot be determined unambiguously for a periodic object. The ability to determine local specimen and imaging parameters directly from electron wave functions is of great importance for quantitative studies of electrostatic potentials in nanoscale materials, in particular when performing in situ experiments and considering that aberrations change over time.
View Article and Find Full Text PDFThe phase and amplitude of the electron wavefunction that has passed through ultra-thin flakes of WSe is measured from high-resolution off-axis electron holograms. Both the experimental measurements and corresponding computer simulations are used to show that, as a result of dynamical diffraction, the spatially averaged phase does not increase linearly with specimen thickness close to an [001] zone axis orientation even when the specimen has a thickness of only a few layers. It is then not possible to infer the local specimen thickness of the WSe from either the phase or the amplitude alone.
View Article and Find Full Text PDFThis report presents a systematic study on the effect of zinc (Zn) carboxylate precursor on the structural and optical properties of red light emitting InP nanocrystals (NCs). NC cores were assessed using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM). When moderate Zn:In ratios in the reaction pot were used, the incorporation of Zn in InP was insufficient to change the crystal structure or band gap of the NCs, but photoluminescence quantum yield (PLQY) increased dramatically compared with pure InP NCs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2016
Density dependent growth and optical properties of periodic arrays of GaAs nanowires (NWs) by fast selective area growth MOVPE are investigated. As the period of the arrays is decreased from 500 nm down to 100 nm, a volume growth enhancement by a factor of up to four compared with the growth of a planar layer is observed. This increase is explained as resulting from increased collection of precursors on the side walls of the nanowires due to the gas flow redistribution in the space between the NWs.
View Article and Find Full Text PDFFor hybrid solar cells, interfacial chemistry is one of the most critical factors for good device performance. We have demonstrated that the size of the surface ligands and the dispersion of nanoparticles in the solvent and in the polymer are important criteria in obtaining optimized device performance. The size of the ligands will affect the charge transport at the particle/particle and particle/polymer interfaces and the chemical structures of the ligands will determine their compatibility with the solvent and polymer.
View Article and Find Full Text PDFElectroluminescence from a single quantum dot within the intrinsic region of a p-i-n junction is shown to act as an electrically driven single-photon source. At low injection currents, the dot electroluminescence spectrum reveals a single sharp line due to exciton recombination, while another line due to the biexciton emerges at higher currents. The second-order correlation function of the diode displays anti-bunching under a continuous drive current.
View Article and Find Full Text PDF