Publications by authors named "Beata Adamiak"

The contribution of virus components to liberation of herpes simplex virus type 2 (HSV-2) progeny virions from the surface of infected cells is poorly understood. We report that the HSV-2 mutant deficient in the expression of a mucin-like membrane-associated glycoprotein G (mgG) exhibited defect in the release of progeny virions from infected cells manifested by ~2 orders of magnitude decreased amount of infectious virus in a culture medium as compared to native HSV-2. Electron microscopy revealed that the mgG deficient virions were produced in infected cells and present at the cell surface.

View Article and Find Full Text PDF

H9N2 avian influenza virus is a major cause of poultry production loss across Asia leading to the wide use of vaccines. Efficacy of vaccines is often compromised due to the rapid emergence of antigenic variants. To improve the effectiveness of vaccines in the field, a better understanding of the antigenic epitopes of the major antigen, hemagglutinin, is required.

View Article and Find Full Text PDF

Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle.

View Article and Find Full Text PDF

Several herpesviruses induce expression of the selectin receptor sialyl-Lewis X (sLe(x) ) by activating transcription of one or more of silent host FUT genes, each one encoding a fucosyltransferase that catalyses the rate-limiting step of sLe(x) synthesis. The aim here was to identify the identity of the glycoconjugate associated with sLe(x) glycoepitope in herpes simplex virus type 1 (HSV-1) infected human diploid fibroblasts, using immunofluorescence confocal microscopy. Cells infected with all tested HSV-1 strains analysed demonstrated bright sLe(x) fluorescence, except for two mutant viruses that were unable to induce proper expression of viral glycoprotein gC-1: One gC-1 null mutant and another mutant expressing gC-1 devoid of its major O-glycan-containing region (aa 33-116).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers screened 16,671 compounds for their ability to inhibit human respiratory syncytial virus (RSV) using HEp-2 cell cultures, identifying two promising candidates: P13 and C15 with IC₅₀ values of 0.11μM and 0.13μM respectively.
  • Despite their effectiveness in reducing RSV infectivity, P13 and C15 did not exhibit direct virucidal activity or prevent virus attachment, but needed to be present during virus entry and cell-to-cell transmission to inhibit syncytial plaques.
  • Viral variants resistant to these drugs emerged during the experiment, displaying specific amino acid substitutions in the RSV F protein, highlighting the potential for developing effective and selective anti-RSV treatments while understanding the
View Article and Find Full Text PDF

Human antibodies specific for glycoprotein C (gC1) of herpes simplex virus type 1 (HSV-1) neutralized the virus infectivity and efficiently inhibited attachment of HSV-1 to human HaCaT keratinocytes and to murine mutant L cells expressing either heparan sulfate or chondroitin sulfate at the cell surface. Similar activities were observed with anti-gC1 monoclonal antibody B1C1. In addition to HaCaT and L cells, B1C1 antibody neutralized HSV-1 infectivity in simian GMK AH1 cells mildly pre-treated with heparinase III.

View Article and Find Full Text PDF

Although sulfated polysaccharides potently inhibit the infectivity of herpes simplex virus (HSV) and human immunodeficiency virus in cultured cells, these compounds fail to show protective effects in humans, most likely due to their poor virucidal activity. Herein we report on sulfated oligosaccharide glycosides related to muparfostat (formerly known as PI-88) and their assessment for anti-HSV activity. Chemical modifications based on the introduction of specific hydrophobic groups at the reducing end of a sulfated oligosaccharide chain enhanced the compound's capability to inhibit the infection of cells by HSV-1 and HSV-2 and abrogated the cell-to-cell transmission of HSV-2.

View Article and Find Full Text PDF

Variants of herpes simplex virus type 2 (HSV-2) generated by virus passage in GMK-AH1 cells in the presence of the sulfated oligosaccharide PI-88 were analyzed. Many of these variants were substantially resistant to PI-88 in their initial infection of cells and/or their cell-to-cell spread. The major alteration detected in all variants resistant to PI-88 in the initial infection of cells was a frameshift mutation(s) in the glycoprotein G (gG) gene that resulted in the lack of protein expression.

View Article and Find Full Text PDF

Herpes simplex virus type 1 variants selected by virus propagation in cultured cells in the presence of the sulfated oligosaccharide PI-88 were analyzed. Many of these variants were substantially resistant to the presence of PI-88 during their initial infection of cells and/or their cell-to-cell spread. Nucleotide sequence analysis revealed that the deletion of amino acids 33-116 of gC but not lack of gC expression provided the virus with selective advantage to infect cells in the presence of PI-88.

View Article and Find Full Text PDF