Publications by authors named "Beat Schmutz"

A previously in-house developed patient-specific scaffold design workflow was extended with new features to overcome several limitations and to broaden its adaptability to diverse bone defects, thereby enhancing its fit for routine clinical use. It was applied to three clinical cases for further validation. A virtual surgical resection tool was developed to remove regions of the bone defect models.

View Article and Find Full Text PDF

Manufacturers aim to design implants fitting for the broadest possible population segment. Due to the scarcity of available morphological data of intact long bones, anatomical collections of historical bone specimens may represent valuable additional sources. Previous work on femoral morphology measurements suggests that historical specimens are widely consistent with data from present-day populations.

View Article and Find Full Text PDF

Background: Magnetic resonance imaging (MRI) is being increasingly considered as an alternative for the evaluation and reconstruction of orbital fractures. No previous research has compared the orbital volume of an MRI-imaged, three-dimensional (3D), reconstructed, and virtually restored bony orbit to the gold standard of computed tomography (CT).

Purpose: To measure the orbital volumes generated from MRI-based 3D models of fractured bony orbits with virtually positioned prebent fan plates in situ and compare them to the volumes of CT-based virtually reconstructed orbital models.

View Article and Find Full Text PDF

Prosthetic Joint Infection (PJI) causes significant morbidity and mortality for patients globally. Delivery of antibiotics to the site of infection has potential to improve the treatment outcomes and enhance biofilm eradication. These antibiotics can be delivered using an intra-articular catheter or combined with a carrier substance to enhance pharmacokinetic properties.

View Article and Find Full Text PDF
Article Synopsis
  • * A two-stage deep learning framework was developed to automatically identify and classify DRFs from wrist X-rays using advanced models, mimicking how doctors examine images for abnormalities.
  • * The framework demonstrated promising results with 81% accuracy and a strong true positive rate, suggesting its potential for improving automatic fracture classification in clinical settings.
View Article and Find Full Text PDF

Background: The impact of the nail radius of curvature, as one of the most important design features in modern femoral nails on the ease of nail removal, remains unknown. Therefore, the aim of this study was to investigate force, energy, and nail deformation of different nail designs.

Methods: Nail insertion and extraction was performed on six pairs of fresh-frozen human cadaveric femora on a material testing machine with two different nail systems - Trochanter femoral nail ADVANCED™ Nailing System with a radius of curvature of 1.

View Article and Find Full Text PDF

Background: Proximal femur fractures are more frequently treated with long femoral nails. Lateral radiographs are used to assess the nail position in the distal femur. However, because of the asymmetric shape of the distal femur, standard lateral radiographs alone are suboptimal for assessing anteriorly positioned nails in the distal femur.

View Article and Find Full Text PDF

This paper proposes a fully automatic method to segment the inner boundary of the bony orbit in two different image modalities: magnetic resonance imaging (MRI) and computed tomography (CT). The method, based on a deep learning architecture, uses two fully convolutional neural networks in series followed by a graph-search method to generate a boundary for the orbit. When compared to human performance for segmentation of both CT and MRI data, the proposed method achieves high Dice coefficients on both orbit and background, with scores of 0.

View Article and Find Full Text PDF

Current xenograft animal models fail to accurately replicate the complexity of human bone disease. To gain translatable and clinically valuable data from animal models, new in vivo models need to be developed that mimic pivotal aspects of human bone physiology as well as its diseased state. Above all, an advanced bone disease model should promote the development of new treatment strategies and facilitate the conduction of common clinical interventional procedures.

View Article and Find Full Text PDF

Introduction: Antegrade nailing of proximal femur fractures is a widely accepted treatment that relies on lateral radiographs to assess distal nail positioning. However, the distal femur is trapezoidal in cross section, consequently standard lateral radiographs may be insufficient. This study aimed to utilise 3D modelling to virtually assess the accuracy of lateral radiographs in defining the position of a femoral nail in the distal femur, specifically considering distal cortical encroachment.

View Article and Find Full Text PDF

Introduction: Gissane's crucial angle (GA) facilitates to diagnose calcaneal fractures, and serves as an indicator of the quality of anatomical reduction after fixation. The study aimed to utilise statistical shape models (SSM) for analysing the complex 3D surface anatomy of the calcaneus represented by the simplified GA measurement on lateral radiographs.

Materials And Methods: SSMs were generated from CT scans of paired adult calcanei from 10 Japanese and 31 Thai specimens.

View Article and Find Full Text PDF

Introduction: Antegrade nailing of proximal femur or femoral shaft fractures is a proven treatment with good to excellent results. Nonetheless, clinical evidence from Asia indicates that proximal femur nails can be too proud at the greater trochanter (GT) causing irritation for some Asian patients. This study aimed to identify any significant differences in proximal nail misfit for a set of Asian and Caucasian femora.

View Article and Find Full Text PDF

Introduction: Intramedullary nailing is the surgical method of choice for the treatment of proximal femur or femoral shaft fractures. Implant manufacturers aim to design implants fitting for the broadest possible population segment. As complete morphological data sets of long bones are not widely available, anatomical collections of historical dry bone specimens may represent abundant additional sources of morphological three-dimensional (3D) data for implant design, provided they are consistent with present populations.

View Article and Find Full Text PDF

Introduction: Intra- and inter-population variations of bone morphology have made the process of designing an anatomically well-fitting fracture fixation plate challenging. Although statistical bone models have recently been used for analysing morphological variabilities, it is not known to what extent they would also provide the basis for the design of a new plate shape. This would be particularly valuable in the case where no existing plate shape is available to start the process of fit optimisation.

View Article and Find Full Text PDF

The monitoring and control of drinking water quality is generally important as it significantly contributes to the health of the population. In this context, particular attention has to be paid to the use of treatment techniques during drinking water treatment. It is known that the formation of reaction products (transformation products) has to be taken into account when oxidizing agents such as ozone are used.

View Article and Find Full Text PDF

Despite the recognized flaws in applying traditional stature estimation equations such as those of Trotter and Gleser (1952) [5] to a contemporary population, there are currently no available alternatives for stature estimation in Australia that address these limitations. Post mortem computed tomography (PMCT) DICOM scans of the left and right femora were acquired from 76 Australian deceased individuals aged 17-76 years for metric analysis. Femoral bicondylar length, femoral epicondylar breadth and anterior-posterior (AP) diameter, medial-lateral (ML) diameter, circumference and cortical area at the femoral midshaft were measured on three-dimensional (3D) models to build statistical models for estimating stature.

View Article and Find Full Text PDF

This study introduces a standardized protocol for conducting linear measurements of postcranial skeletal elements using three-dimensional (3D) models constructed from post-mortem computed tomography (PMCT) scans. Using femoral DICOM datasets, reference planes were generated and plane-to-plane measurements were conducted on 3D surface rendered models. Bicondylar length, epicondylar breadth, anterior-posterior (AP) diameter, medial-lateral (ML) diameter and cortical area at the midshaft were measured by four observers to test the measurement error variance and observer agreement of the protocol (n=6).

View Article and Find Full Text PDF

Introduction: Anatomic fit of intramedullary nails was suggested by previous studies to improve significantly when the nail radius of curvature (ROC) is closer to the average femoral anatomy. However, no attempt has been made to investigate the impact of different ROC designs on the nail insertion process. Therefore, this biomechanical study quantitatively compared the ease of insertion between femoral intramedullary nails with a 1.

View Article and Find Full Text PDF

Background: Current intramedullary nails with a radius of curvature (ROC) of 1500-2000 mm sometimes cause distal anterior cortical encroachment. Furthermore, clinical data indicate that the proximal nail end is too long for some Asian patients. The objective of our study was to develop a comprehensive 3D measurement protocol that measures both the anatomy of the canal and the proximal region.

View Article and Find Full Text PDF

Background: Pilon fracture reduction is a challenging surgery. Radiographs are commonly used to assess the quality of reduction, but are limited in revealing the remaining bone incongruities. The study aimed to develop a method in quantifying articular malreductions using 3D computed tomography (CT) and magnetic resonance imaging (MRI) models.

View Article and Find Full Text PDF

Background: The radius of curvature (ROC) misfit of cephalomedullary nails during anterograde nailing can lead to complications such as distal anterior cortical encroachment. This study quantified the anatomical fit of a new nail with 1.0-m ROC (TFN-ADVANCED(™) Proximal Femoral Nailing System [TFNA]) compared with a nail with 1.

View Article and Find Full Text PDF

Anatomically precontoured plates are commonly used to treat periarticular fractures. A well-fitting plate can be used as a tool for anatomical reduction of the fractured bone. Recent studies highlighted that some plates fit poorly for many patients due to considerable shape variations between bones of the same anatomical site.

View Article and Find Full Text PDF

Intramedullary nailing is the standard fixation method for displaced diaphyseal fractures of the tibia. An optimal nail design should both facilitate insertion and anatomically fit the bone geometry at its final position in order to reduce the risk of stress fractures and malalignments. Due to the nonexistence of suitable commercial software, we developed a software tool for the automated fit assessment of nail designs.

View Article and Find Full Text PDF

Radiographs are commonly used to assess articular reduction of the distal tibia (pilon) fractures postoperatively, but may reveal malreductions inaccurately. While magnetic resonance imaging (MRI) and computed tomography (CT) are potential three-dimensional (3D) alternatives they generate metal-related artifacts. This study aims to quantify the artifact size from orthopaedic screws using CT, 1.

View Article and Find Full Text PDF

The transformation of the artificial sweetener acesulfame by direct photolysis was investigated at various pH values, in different water types and at various concentration levels. Main photodegradation products of acesulfame were elucidated and analyzed both in laboratory experiments and in a full-scale waterworks using UV treatment for disinfection purposes. The degradation of acesulfame was found to be independent of the pH (range 5-11) and followed pseudo first order kinetics in a concentration range between 1 μg∙L(-1) and 10 mg∙L(-1).

View Article and Find Full Text PDF