Publications by authors named "Beat Mollet"

Until recently breeding efforts centred on high-yield production while sacrificing flavour and taste quality traits of mass produced food products, such as tomatoes. The recent publication of Davidovich-Rikanati et al. demonstrates the technical feasibility of the genetical engineering of pathways in tomato plants to modify their fruit flavour profile in a proof-of-concept approach.

View Article and Find Full Text PDF

Using a chemically defined medium without L-alanine, Lactobacillus johnsonii was demonstrated to be strictly auxotrophic for that amino acid. A comparative genetic analysis showed that all known genes involved in L-alanine biosynthesis are absent from the genome of L. johnsonii.

View Article and Find Full Text PDF

Lactobacillus johnsonii NCC 533 is a member of the acidophilus group of intestinal lactobacilli that has been extensively studied for their "probiotic" activities that include, pathogen inhibition, epithelial cell attachment, and immunomodulation. To gain insight into its physiology and identify genes potentially involved in interactions with the host, we sequenced and analyzed the 1.99-Mb genome of L.

View Article and Find Full Text PDF

The gene encoding the dextransucrase DsrD from the industrial strain Leuconostoc mesenteroides Lcc4 was isolated by PCR using degenerate primers recognizing conserved regions present in other dextransucrase-encoding genes from Leuconostoc spp. and Southern blot analyses on total genomic DNA. N-terminal sequence analysis of the active protein recovered in the culture showed that the secreted protein of 165 kDa is devoid of a 42 aa prepeptide which is removed post-translationally, most likely by signal peptidase cleavage.

View Article and Find Full Text PDF

Based on the 16S rDNA sequences, species specific primers were designed for the rapid identification by DNA amplification of nine human Bifidobacterium spp., namely B. adolescentis, B.

View Article and Find Full Text PDF

The species Lactobacillus delbrueckii consists at present of three subspecies, delbrueckii, lactis and bulgaricus, showing a high level of DNA-DNA hybridization similarity but presenting markedly different traits related to distinct ecological adaptation. The internal genetic heterogeneity of the bacterial species L. delbrueckii was analyzed.

View Article and Find Full Text PDF

Lactobacillus delbrueckiisubsp. bulgaricus produces exopolysaccharides (EPSs), which play a role in the rheological properties of fermented food products. Lb.

View Article and Find Full Text PDF

The plasmids pN42 and pJBL2 were isolated from the Lactobacillus delbrueckii subsp. lactis strains NCC88 and JCL414. DNA sequence determination and bioinformatic analysis revealed a strikingly conserved genetic organization containing five major, highly conserved open reading frames (ORFs).

View Article and Find Full Text PDF