Publications by authors named "Beas B"

The appropriate selection of passive and active defensive behaviors in threatening situations is essential for survival. Previous studies have shown that passive defensive responses depend on activity of the central nucleus of the amygdala (CeA), whereas active ones primarily rely on the nucleus accumbens (NAc). However, the mechanisms underlying flexible switching between these two types of responses remain unknown.

View Article and Find Full Text PDF

Ionotropic glutamate receptors of the NMDA and AMPA subtypes transduce excitatory signaling on neurons in the prefrontal cortex (PFC) in support of cognitive flexibility. Cognitive flexibility is reliably observed to decline at advanced ages, coinciding with changes in PFC glutamate receptor expression and neuronal physiology. However, the relationship between age-related impairment of cognitive flexibility and changes to excitatory signaling on distinct classes of PFC neurons is not known.

View Article and Find Full Text PDF

The paraventricular nucleus of the thalamus (PVT) is increasingly being recognized as a critical node linking stress detection to the emergence of adaptive behavioral responses to stress. However, despite growing evidence implicating the PVT in stress processing, the neural mechanisms by which stress impacts PVT neurocircuitry and promotes stressed states remain unknown. Here we show that stress exposure drives a rapid and persistent reduction of inhibitory transmission onto projection neurons of the posterior PVT (pPVT).

View Article and Find Full Text PDF

Unlabelled: Working memory, the ability to temporarily maintain representational knowledge, is a foundational cognitive process that can become compromised in aging and neuropsychiatric disease. NMDA receptor (NMDAR) activation in prefrontal cortex (PFC) is necessary for the pyramidal neuron activity believed to enable working memory; however, the distinct biophysical properties and localization of NMDARs containing NR2A and NR2B subunits suggest unique roles for NMDAR subtypes in PFC neural activity and working memory. Experiments herein show that working memory depends on NR2A- but not NR2B-NMDARs in PFC of rats and that NR2A-NMDARs mediate the majority of evoked NMDAR currents on layer 2/3 PFC pyramidal neurons.

View Article and Find Full Text PDF

Rationale: The ability to adjust response strategies when faced with changes in the environment is critical for normal adaptive behavior. Such behavioral flexibility is compromised by experimental disruption of cortical GABAergic signaling, as well as in conditions such as schizophrenia and normal aging that are characterized by cortical hyperexcitability. The current studies were designed to determine whether stimulation of GABAergic signaling using the GABA(B) receptor agonist baclofen can facilitate behavioral flexibility.

View Article and Find Full Text PDF

Cognitive function depends on transcription; however, there is little information linking altered gene expression to impaired prefrontal cortex function during aging. Young and aged F344 rats were characterized on attentional set shift and spatial memory tasks. Transcriptional differences associated with age and cognition were examined using RNA sequencing to construct transcriptomic profiles for the medial prefrontal cortex (mPFC), white matter, and region CA1 of the hippocampus.

View Article and Find Full Text PDF

The prefrontal cortex (PFC) is critical for the ability to flexibly adapt established patterns of behavior in response to a change in environmental contingencies. Impaired behavioral flexibility results in maladaptive strategies such as perseveration on response options that no longer produce a desired outcome. Pharmacological manipulations of prefrontal cortical GABAergic signaling modulate behavioral flexibility in animal models, and prefrontal cortical interneuron dysfunction is implicated in impaired behavioral flexibility that accompanies neuropsychiatric disease.

View Article and Find Full Text PDF

The ability to make advantageous decisions under circumstances in which there is a risk of adverse consequences is an important component of adaptive behavior; however, extremes in risk taking (either high or low) can be maladaptive and are characteristic of a number of neuropsychiatric disorders. To better understand the contributions of various affective and cognitive factors to risky decision making, cohorts of male Long-Evans rats were trained in a "Risky Decision making Task" (RDT), in which they made discrete trial choices between a small, "safe" food reward and a large, "risky" food reward accompanied by varying probabilities of footshock. Experiment 1 evaluated the relative contributions of the affective stimuli (i.

View Article and Find Full Text PDF

Working memory functions supported by the prefrontal cortex decline in normal aging. Disruption of corticolimbic GABAergic inhibitory circuits can impair working memory in young subjects; however, relatively little is known regarding how aging impacts prefrontal cortical GABAergic signaling and whether such changes contribute to cognitive deficits. The current study used a rat model to evaluate the effects of aging on expression of prefrontal GABAergic synaptic proteins in relation to working memory decline, and to test whether pharmacological manipulations of prefrontal GABAergic signaling can improve working memory abilities in aged subjects.

View Article and Find Full Text PDF

Poor decision making and elevated risk taking, particularly during adolescence, have been strongly linked to drug use; however the causal relationships among these factors are not well understood. To address these relationships, a rat model (the Risky Decision-making Task; RDT) was used to determine whether individual differences in risk taking during adolescence predict later propensity for cocaine self-administration and/or whether cocaine self-administration causes alterations in risk taking. In addition, the RDT was used to determine how risk taking is modulated by dopamine signaling, particularly in the striatum.

View Article and Find Full Text PDF

Background: Ethanol (EtOH) abuse is a major health and economic concern, particularly for females who appear to be more sensitive to the rewarding effects of EtOH. This study compared sex differences to the rewarding and aversive effects of EtOH using place-conditioning procedures in rats.

Methods: Separate groups of adult (male, female, ovariectomized [OVX] female) and adolescent (male and female) rats received EtOH (0, 0.

View Article and Find Full Text PDF

Sedimentation from cultivated agricultural land use has altered the natural hydrologic regimes of depressional wetlands in the Great Plains. These alterations can negatively affect native wetland plant communities. Our objective was to determine if restored wetlands are developing plant communities similar to reference wetland conditions following hydrologic restoration.

View Article and Find Full Text PDF

Different components of executive function such as working memory, attention, and cognitive flexibility can be dissociated behaviorally and mechanistically; however, the within-subject influences of normal aging on different aspects of executive function remain ill-defined. To better define these relationships, young adult and aged male F344 rats were cross-characterized on an attentional set-shifting task that assesses cognitive flexibility and a delayed response task that assesses working memory. Across tasks, aged rats were impaired relative to young; however, there was significant variability in individual performance within the aged cohort.

View Article and Find Full Text PDF

Variation in dopamine receptor levels has been associated with different facets of impulsivity. To further delineate the neural substrates underlying impulsive action (inability to withhold a prepotent motor response) and impulsive choice (delay aversion), we characterised rats in the Differential Reinforcement of Low Rates of Responding task and a delay discounting task. We also measured performance on an effort-based discounting task.

View Article and Find Full Text PDF

Many psychiatric disorders are characterized by abnormal risky decision-making and dysregulated dopamine receptor expression. The current study was designed to determine how different dopamine receptor subtypes modulate risk-taking in young adult rats, using a "Risky Decision-making Task" that involves choices between small "safe" rewards and large "risky" rewards accompanied by adverse consequences. Rats showed considerable, stable individual differences in risk preference in the task, which were not related to multiple measures of reward motivation, anxiety, or pain sensitivity.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) has been characterized as a potent modulator of neural plasticity in both the brain and spinal cord. The present experiments use an in vivo model system to demonstrate that training with controllable stimulation increases spinal BDNF expression and engages a BDNF-dependent process that promotes adaptive plasticity. Spinally transected rats administered legshock whenever one hind limb is extended (controllable stimulation) exhibit a progressive increase in flexion duration.

View Article and Find Full Text PDF