Proc Natl Acad Sci U S A
December 2023
Philos Trans R Soc Lond B Biol Sci
April 2014
The high rate of return on investments in research and development in agriculture, estimated at between 20- and 40-fold, provides a strong rationale for increasing financial support for such research. Furthermore, the urgency to provide sufficient nutrition for a growing population amid growing demands for an expanding bioeconomy, while facing population growth and changing global weather patterns heightens the urgency to expand research and development in this field. Unfortunately, support by governments for research has increased at a fraction of the rate of increases in support of research for health, energy, etc.
View Article and Find Full Text PDFCuticular waxes are involved in the regulation of the exchange of gases and water in plants and can impact tolerance to drought. However, the molecular mechanisms of the relationship between wax accumulation and drought tolerance are largely unknown. We applied the methoxyfenozide gene switching system to regulate expression of the WIN1/SHN1 gene (WAX INDUCER 1/SHINE1; At1G15360), a transcriptional activator, to regulate production of cuticular waxes and cutin and followed changes of gene expression, metabolites, and drought tolerance.
View Article and Find Full Text PDFThe ability to regulate spatial and temporal expression of genes is a useful tool in biotechnology as well as studies of functional genomics. Such regulation can provide information concerning the function of a gene in a developmental context while avoiding potential harmful effects due to constitutive overexpression of the gene. A GUS gene construct that uses the ecdysone receptor-based chemically inducible system and several different tissue-specific promoters was introduced into the model plant Arabidopsis thaliana and into the crop plant Brassica juncea.
View Article and Find Full Text PDFFull understanding of mechanisms that control seed dormancy and germination remains elusive. Whereas it has been proposed that translational control plays a predominant role in germination, other studies suggest the importance of specific gene expression patterns in imbibed seeds. Transgenic plants were developed to permit conditional expression of a gene encoding 9-cis-epoxycarotenoid dioxygenase 6 (NCED6), a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, using the ecdysone receptor-based plant gene switch system and the ligand methoxyfenozide.
View Article and Find Full Text PDFBROTHER OF LUX ARRHYTHMO (BOA) is a GARP family transcription factor in Arabidopsis thaliana and is regulated by circadian rhythms. Transgenic lines that constitutively overexpress BOA exhibit physiological and developmental changes, including delayed flowering time and increased vegetative growth under standard growing conditions. Arabidopsis circadian clock protein CIRCADIAN CLOCK ASSOCIATED1 (CCA1) binds to the evening element of the BOA promoter and negatively regulates its expression.
View Article and Find Full Text PDFMany bioenergy feedstocks are not easily converted to fermentable substrates due to of high proportions of lignin, which impedes the degradation of cell wall polysaccharides to fermentable sugars. To reduce lignin levels during plant growth, we generated transgenic Arabidopsis plants that contain a gene that confers inducible silencing of both 4CL1 and 4CL2 genes; these genes play a compensatory role in normal development of Arabidopsis, including in mechanisms of stem growth. To alter lignocellulose composition at specific times in plant development, genes were silenced at bolting, immature stages (5-7 cm high), and intermediate stages (10-15 cm high).
View Article and Find Full Text PDFRoger Beachy, the first Director of the newly founded US National Institute of Food and Agriculture, talks about the challenges for plant science and agricultural research in the genomics era.
View Article and Find Full Text PDFPlant Biotechnol J
September 2010
Rice transcription factor RF2a binds to the BoxII cis element of the promoter of rice tungro bacilliform virus and activates promoter expression. The acidic acid-rich domain of RF2a is a transcription activator and has been partially characterized (Dai et al., 2003).
View Article and Find Full Text PDFSoybean was used as a model for studies of chemical induction of gene expression in seeds. A chimeric transcriptional activator, VGE, driven by the soybean seed glycinin G1 promoter, was used to induce the expression of an ER-targeted GFP(KDEL) reporter protein upon addition of the chemical ligand, methoxyfenozide. The chemical gene switch activated gene expression under in vitro conditions in somatic cotyledonary embryos and zygotic seed embryos cultured from transgenic soybean plants, as well as in seeds in planta under greenhouse conditions.
View Article and Find Full Text PDFThe symptoms of rice tungro disease are caused by infection by a DNA-containing virus, rice tungro bacilliform virus (RTBV). To reduce expression of the RTBV promoter, and to ultimately reduce virus replication, we tested three synthetic zinc finger protein transcription factors (ZF-TFs), each comprised of six finger domains, designed to bind to sequences between -58 and +50 of the promoter. Two of these ZF-TFs reduced expression from the promoter in transient assays and in transgenic Arabidopsis thaliana plants.
View Article and Find Full Text PDFPopulation growth, arable land and fresh water limits, and climate change have profound implications for the ability of agriculture to meet this century's demands for food, feed, fiber, and fuel while reducing the environmental impact of their production. Success depends on the acceptance and use of contemporary molecular techniques, as well as the increasing development of farming systems that use saline water and integrate nutrient flows.
View Article and Find Full Text PDFRice tungro disease (RTD) is a significant yield constraint in rice-growing areas of South and Southeast Asia. Disease symptoms are caused largely by infection by the rice tungro bacilliform virus (RTBV). Two host transcription factors, RF2a and RF2b, regulate expression of the RTBV promoter and are important for plant development.
View Article and Find Full Text PDFABSTRACT Seven crop and eight weed species from 12 agricultural locations in Trinidad and Tobago were assayed for the presence of whitefly-transmitted geminiviruses (WTGs) by using dot blot hybridization and polymerase chain reaction (PCR) amplification of the N-terminal coat protein sequence with degenerate primers. The amplified fragments were cloned and analyzed by restriction enzyme digestion to determine fragment length polymorphism among the cloned fragments. Representative clones were then sequenced and subjected to phylogenetic analysis to determine the sequence similarity to known WTGs.
View Article and Find Full Text PDFABSTRACT Rice tungro disease is caused by rice tungro bacilliform virus (RTBV), which is responsible for the symptoms, and rice tungro spherical virus (RTSV), which assists transmission of both viruses by leafhoppers. Transgenic japonica rice plants (Oryza sativa) were produced containing the RTSV replicase (Rep) gene in the sense or antisense orientation. Over 70% of the plants contained one to five copies of the Rep gene, with integration occurring at a single locus in most cases.
View Article and Find Full Text PDFABSTRACT The expression of a gene that encodes coat protein (CP) of Potato virus X (PVX) in transgenic tobacco plants confers a high level of CP-mediated rresistance (CP-MR) against PVX infection. To determine if posttranscriptional gene silencing (PTGS) plays a role in resistance, transgenic plants expressing PVX CP were challenged against PVX under conditions in which PTGS was suppressed by low temperatures or using viruses carrying PTGS suppressors. The data demonstrate that PTGS does not play a significant role in PVX CP-MR.
View Article and Find Full Text PDFStudy of plant cell biology has benefited tremendously from the use of fluorescent proteins (FPs). Development of well-established techniques in genetics, by transient expression or by Agrobacterium-mediated plant cell transformation, makes it possible to readily create material for imaging molecules tagged with FPs. Confocal microscopy of FPs is routine and, in highly scattering tissues, multiphoton microscopy improves deep imaging.
View Article and Find Full Text PDFInfections by plant virus generally cause disease symptoms by interfering with cellular processes. Here we demonstrated that infection of Nicotiana tabacum (N.t) by plant viruses representative of the Tobamoviridae, Potyviridae, and Potexviridae families altered accumulation of certain microRNAs (miRNAs).
View Article and Find Full Text PDFExpression of tobacco mosaic virus (TMV) coat protein (CP) restricts virus disassembly and alters the accumulation of the movement protein (MP). To characterize the role of structure of transgenic CP in regulating virus disassembly and production of MP, we generated CPs with mutations at residues Glu50 and Asp77, located in the interface between juxtaposed CP subunits. In transgenic Nicotiana tabacum and BY-2 cells, three categories of coat protein-mediated resistance (CP-MR) levels were identified: wild-type CP-MR; elevated CP-MR; and no CP-MR.
View Article and Find Full Text PDFTobacco mosaic virus (TMV) coat protein (CP) in absence of RNA self-assembles into several different structures depending on pH and ionic strength. Transgenic plants that produce self-assembling CP are resistant to TMV infection, a phenomenon referred to as coat-protein-mediated resistance (CP-MR). The mutant CP Thr42Trp (CP(T42W)) produces enhanced CP-MR compared to wild-type CP.
View Article and Find Full Text PDF