Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons from the substantia nigra (SN) that project to the dorsal striatum (caudate-putamen). To better understand the molecular mechanisms underlying PD, we performed combined lipid profiling and RNA sequencing of SN and putamen samples from PD patients and age-matched controls. SN lipid analysis pointed to a neuroinflammatory component and included elevated levels of the endosomal lipid Bis (Monoacylglycero)Phosphate 42:8, while two of the three depleted putamen lipids were saturated sphingomyelin species.
View Article and Find Full Text PDFThe congenital form of myotonic dystrophy type 1 (cDM) is caused by the large-scale expansion of a (CTG•CAG) repeat in and . The production of toxic transcripts with long trinucleotide tracts from these genes results in impairment of the myogenic differentiation capacity as cDM's most prominent morpho-phenotypic hallmark. In the current in vitro study, we compared the early differentiation programs of isogenic cDM myoblasts with and without a (CTG)2600 repeat obtained by gene editing.
View Article and Find Full Text PDFParkinson's disease (PD) is a highly prevalent neurodegenerative disease for which no disease-modifying treatments are available, mainly because knowledge about its pathogenic mechanism is still incomplete. Recently, a key role for lipids emerged, but lipid profiling of brain samples from human subjects is demanding. Here, we used an unbiased approach, lipidomics, to determine PD-linked changes in the lipid profile of a well-established cell model for PD, the catecholaminergic neuronal cell line SH-SY5Y treated with the neurotoxin 6-hydroxydopamine (6-OHDA).
View Article and Find Full Text PDFBackground: Study motivation and knowledge retention benefit from regular student self-assessments. Inclusion of certainty-based learning (CBL) in computer-assisted formative tests may further enhance this by enabling students to identify whether they are uninformed or misinformed regarding the topics tested, which may trigger future study actions including instructor consultation.
Methods: Using a cross-over study design involving two out of thirteen computer-assisted formative assessments (CAFAs) of a first-year cell biology course, we compared student-instructor interactions, student learning experiences and final exam scores between two (bio)medical science student cohorts who worked with different CBL-containing CAFAs.
Myotonic dystrophy type 1 (DM1) is a complex neuromuscular disorder caused by expansion of a CTG repeat in the 3'-untranslated region (UTR) of the gene. Mutant transcripts form aberrant structures and anomalously associate with RNA-binding proteins (RBPs). As a first step toward better understanding of the involvement of abnormal mRNA folding in DM1 manifestation, we used SHAPE, DMS, CMCT, and RNase T1 structure probing in vitro for modeling of the topology of the 3'-UTR with normal and pathogenic repeat lengths of up to 197 CUG triplets.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disease characterized by a progressive loss of dopaminergic neurons from the nigrostriatal pathway, formation of Lewy bodies, and microgliosis. During the past decades multiple cellular pathways have been associated with PD pathology (i.e.
View Article and Find Full Text PDFMyotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles.
View Article and Find Full Text PDFIn yeast and higher eukaryotes nuclear retention of transcripts may serve in control over RNA decay, nucleocytoplasmic transport and premature cytoplasmic appearance of mRNAs. Hyperadenylation of RNA is known to be associated with nuclear retention, but the cause-consequence relationship between hyperadenylation and regulation of RNA nuclear export is still unclear. We compared polyadenylation status between normal and expanded DMPK transcripts in muscle cells and tissues derived from unaffected individuals and patients with myotonic dystrophy type 1 (DM1).
View Article and Find Full Text PDFClinical efficacy of antisense oligonucleotides (AONs) for the treatment of neuromuscular disorders depends on efficient cellular uptake and proper intracellular routing to the target. Selection of AONs with highest in vitro efficiencies is usually based on chemical or physical methods for forced cellular delivery. Since these methods largely bypass existing natural mechanisms for membrane passage and intracellular trafficking, spontaneous uptake and distribution of AONs in cells are still poorly understood.
View Article and Find Full Text PDFMyotonic dystrophy type 1 (DM1) is caused by (CTG⋅CAG)-repeat expansion within the DMPK gene and thought to be mediated by a toxic RNA gain of function. Current attempts to develop therapy for this disease mainly aim at destroying or blocking abnormal properties of mutant DMPK (CUG)n RNA. Here, we explored a DNA-directed strategy and demonstrate that single clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-cleavage in either its 5' or 3' unique flank promotes uncontrollable deletion of large segments from the expanded trinucleotide repeat, rather than formation of short indels usually seen after double-strand break repair.
View Article and Find Full Text PDFMol Neurodegener
January 2017
Parkinson's disease (PD) is a devastating and highly prevalent neurodegenerative disease for which only symptomatic treatment is available. In order to develop a truly effective disease-modifying therapy, improvement of our current understanding of the molecular and cellular mechanisms underlying PD pathogenesis and progression is crucial. For this purpose, standardization of research protocols and disease models is necessary.
View Article and Find Full Text PDFThe unstable (CTG·CAG)n trinucleotide repeat in the myotonic dystrophy type 1 (DM1) locus is bidirectionally transcribed from genes with terminal overlap. By transcription in the sense direction, the DMPK gene produces various alternatively spliced mRNAs with a (CUG)n repeat in their 3' UTR. Expression in opposite orientation reportedly yields (CAG)n-repeat containing RNA, but both structure and biologic significance of this antisense gene (DM1-AS) are largely unknown.
View Article and Find Full Text PDFMuscular manifestation of myotonic dystrophy type 1 (DM1), a common inheritable degenerative multisystem disorder, is mainly caused by expression of RNA from a (CTG·CAG)n-expanded DM1 locus. Here, we report on comparative profiling of expression of normal and expanded endogenous or transgenic transcripts in skeletal muscle cells and biopsies from DM1 mouse models and patients in order to help us in understanding the role of this RNA-mediated toxicity. In tissue of HSA(LR) mice, the most intensely used 'muscle-only' model in the DM1 field, RNA from the α-actin (CTG)250 transgene was at least 1000-fold more abundant than that from the Dmpk gene, or the DMPK gene in humans.
View Article and Find Full Text PDFMyotonic Dystrophy type 1 (DM1) is a multisystemic disease caused by toxic RNA from a DMPK gene carrying an expanded (CTG•CAG)n repeat. Promising strategies for treatment of DM1 patients are currently being tested. These include antisense oligonucleotides and drugs for elimination of expanded RNA or prevention of aberrant binding to RNP proteins.
View Article and Find Full Text PDFSubcellular partitioning of creatine kinase contributes to the formation of patterns in intracellular ATP distribution and the fuelling of cellular processes with a high and sudden energy demand. We have previously shown that brain-type creatine kinase (CK-B) accumulates at the phagocytic cup in macrophages where it is involved in the compartmentalized generation of ATP for actin remodeling. Here, we report that CK-B catalytic activity also helps in the formation of protrusive ruffle structures which are actin-dependent and abundant on the surface of both unstimulated and LPS-activated macrophages.
View Article and Find Full Text PDFFunctional morphodynamic behavior of differentiated macrophages is strongly controlled by actin cytoskeleton rearrangements, a process in which also metabolic cofactors ATP and NAD(H) (i.e. NAD+ and NADH) and NADP(H) (i.
View Article and Find Full Text PDFMacrophages constantly undergo morphological changes when quiescently surveying the tissue milieu for signs of microbial infection or damage, or after activation when they are phagocytosing cellular debris or foreign material. These morphofunctional alterations require active actin cytoskeleton remodeling and metabolic adaptation. Here we analyzed RAW 264.
View Article and Find Full Text PDFMyotonic dystrophy type 1 (DM1) is caused by DM protein kinase (DMPK) transcripts containing an expanded (CUG)n repeat. Antisense oligonucleotide (AON)-mediated suppression of these mutant RNAs is considered a promising therapeutic strategy for this severe disorder. Earlier, we identified a 2'-O-methyl (2'-OMe) phosphorothioate (PT)-modified (CAG)7 oligo (PS58), which selectively silences mutant DMPK transcripts through recognition of the abnormally long (CUG)n tract.
View Article and Find Full Text PDFOncogenic transformation involves reprogramming of cell metabolism, whereby steady-state levels of intracellular NAD(+) and NADH can undergo dramatic changes while ATP concentration is generally well maintained. Altered expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of NAD(+)-salvage, accompanies the changes in NAD(H) during tumorigenesis. Here, we show by genetic and pharmacological inhibition of NAMPT in glioma cells that fluctuation in intracellular [NAD(H)] differentially affects cell growth and morphodynamics, with motility/invasion capacity showing the highest sensitivity to [NAD(H)] decrease.
View Article and Find Full Text PDFTransformed cancer cells have an altered metabolism, characterized by a shift towards aerobic glycolysis, referred to as 'the Warburg phenotype'. A change in flux through mitochondrial OXPHOS and cytosolic pathways for ATP production and a gain of capacity for biomass production in order to sustain the needs for altered growth and morphodynamics are typically involved in this global rewiring of cancer cell metabolism. Characteristically, these changes in metabolism are accompanied by enhanced uptake of nutrients like glucose and glutamine.
View Article and Find Full Text PDFTRPM7 encodes a Ca2+-permeable nonselective cation channel with kinase activity. TRPM7 has been implicated in control of cell adhesion and migration, but whether TRPM7 activity contributes to cancer progression has not been established. Here we report that high levels of TRPM7 expression independently predict poor outcome in breast cancer patients and that it is functionally required for metastasis formation in a mouse xenograft model of human breast cancer.
View Article and Find Full Text PDFExtracellular ATP and ADP trigger inflammatory, vasodilatatory, and prothrombotic signaling events in the vasculature, and their turnover is governed by networks of membrane-associated enzymes. The contribution of soluble activities to intravascular nucleotide homeostasis remains controversial. By using thin-layer chromatographic assays, we revealed transphosphorylation of [γ-(32)P]ATP and AMP by human and murine sera, which was progressively inhibited by specific adenylate kinase (AK) inhibitor Ap(5)A.
View Article and Find Full Text PDFSerine/threonine kinases of the AGC group are important regulators of cell growth and motility. To examine the candidate substrate profile for two members of this group, DMPK E and Lats2, we performed in vitro kinase assays on peptide arrays. Substrate peptides for both kinases exhibited a predominance of basic residues surrounding the phosphorylation target site.
View Article and Find Full Text PDFHuman mitochondrial complex I (CI) deficiency is associated with progressive neurological disorders. To better understand the CI pathomechanism, we here studied how deletion of the CI gene NDUFS4 affects cell metabolism. To this end we compared immortalized mouse embryonic fibroblasts (MEFs) derived from wildtype (wt) and whole-body NDUFS4 knockout (KO) mice.
View Article and Find Full Text PDFMyosin II is a hexameric protein complex consisting of two myosin heavy chains, two myosin essential light chains and two myosin regulatory light chains. Multiple subunit isoforms exist, allowing great diversity in myosin II composition which likely impacts on its contractile properties. Little is known about the evolutionary origin, expression pattern and function of myosin regulatory light chain (MLC2) isoforms.
View Article and Find Full Text PDF