It is reported that low concentration of amphiphilic triblock copolymers of pMeOx-b-pTHF-b-pMeOx structure (TBCPs) improves gene expression in skeletal muscle upon intramuscular co-injection with plasmid DNA. Physicochemical studies carried out to understand the involved mechanism show that a phase transition of TBCPs under their unimer state is induced when the temperature is elevated from 25 to 37 °C, the body temperature. Several lines of evidences suggest that TBCP insertion in a lipid bilayer causes enough lipid bilayer destabilization and even pore formation, a phenomenon heightened during the phase transition of TBCPs.
View Article and Find Full Text PDFNeutral amphiphilic triblock ABA copolymers are of great interest to solubilize hydrophobic drugs. We reported that a triblock ABA copolymer consisting of methyl-2-oxazoline (MeOx) and tetrahydrofuran (THF) (MeOx-THF-MeOx) (TBCP2) can solubilize curcumin (Cur) a very hydrophobic molecule exhibiting multiple therapeutic effects but whose insolubility and low stability in water is a major drawback for clinical applications. Here, we provide evidences by flow cytometry and confocal microscopy that Cur penetration in normal and ΔF508-CFTR human airway epithelial cell lines is facilitated by TBCP2.
View Article and Find Full Text PDFBlock copolymers assembled into micelles have gained a lot of attention to improve drug delivery. The recent drawbacks of the poly(ethylene oxide) blocks (PEO) contained in amphiphilic pluronics derivatives made of a central poly(propylene oxide) block surrounded by two PEO blocks were recently revealed, opening the way to the design of new amphiphilic block copolymers able to self-assemble in water and to entrap molecules of interest. Here, a family of p(methyloxazoline)-b-p(tetrahydrofuran)-b-p(methyloxazoline) triblock copolymers (called TBCP) is synthesized using cationic ring opening polymerization.
View Article and Find Full Text PDF