Publications by authors named "Bazihizina N"

Salinization is a major cause of soil degradation that affects several million hectares of agricultural land, threatening food security and the sustainability of agricultural systems worldwide. Nevertheless, despite the negative impact of salinity, salt-affected land also provides several important ecosystem services, from providing habitats and nurseries for numerous species to sustainable food production. This opinion paper, written in the framework of the EU COST Action CA22144 SUSTAIN on the sustainable use of salt-affected land, therefore, focuses on the potential of halophytes and saline agriculture to transform and restore key functions of these salt-affected and marginal lands.

View Article and Find Full Text PDF

Sugar beet (Beta vulgaris) is the major sugar-producing crop in Europe and Northern America, as the taproot stores sucrose at a concentration of around 20%. Genome sequence analysis together with biochemical and electrophysiological approaches led to the identification and characterization of the TST sucrose transporter driving vacuolar sugar accumulation in the taproot. However, the sugar transporters mediating sucrose uptake across the plasma membrane of taproot parenchyma cells remained unknown.

View Article and Find Full Text PDF

Solanum lycopersicum L., a crop grown worldwide with a high nutritional value for the human diet, was used to test the impact of microplastics on plant growth, productivity, and fruit quality. Two of the most represented microplastics in soils, polyethylene terephthalate (PET) and polyvinyl chloride (PVC), were tested.

View Article and Find Full Text PDF

Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na ), chloride (Cl ), potassium (K ) and various metabolites are shuttled from the leaf lamina to the bladders.

View Article and Find Full Text PDF

Background: Soil salinity, in both natural and managed environments, is highly heterogeneous, and understanding how plants respond to this spatiotemporal heterogeneity is increasingly important for sustainable agriculture in the era of global climate change. While the vast majority of research on crop response to salinity utilizes homogeneous saline conditions, a much smaller, but important, effort has been made in the past decade to understand plant molecular and physiological responses to heterogeneous salinity mainly by using split-root studies. These studies have begun to unravel how plants compensate for water/nutrient deprivation and limit salt stress by optimizing root-foraging in the most favourable parts of the soil.

View Article and Find Full Text PDF

Significant variation in epidermal bladder cell (EBC) density and salt tolerance (ST) exists amongst quinoa accessions, suggesting that salt sequestration in EBCs is not the only mechanism conferring ST in this halophyte. In order to reveal other traits that may operate in tandem with salt sequestration in EBCs and whether these additional tolerance mechanisms acted mainly at the root or shoot level, two quinoa (Chenopodium quinoa) accessions with contrasting ST and EBC densities (Q30, low ST with high EBC density versus Q68, with high ST and low EBC density) were studied. The results indicate that responses in roots, rather than in shoots, contributed to the greater ST in the accession with low EBC density.

View Article and Find Full Text PDF

Soil salinity is among the major abiotic stresses that plants must cope with, mainly in arid and semiarid regions. The tolerance to high salinity is an important agronomic trait to sustain food production. Quinoa is a halophytic annual pseudo-cereal species with high nutritional value that can secrete salt out of young leaves in external non-glandular cells called epidermal bladder cells (EBC).

View Article and Find Full Text PDF

In this opinion article, we challenge the traditional view that breeding for reduced Cl uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl concentration and plant biomass does not hold for halophytes - naturally salt tolerant species. We argue that, under physiologically relevant conditions, Cl uptake requires plants to invest metabolic energy, and that the poor selectivity of Cl-transporting proteins may explain the reported negative correlation between Cl accumulation and crop salinity tolerance.

View Article and Find Full Text PDF

Soil salinity is destroying arable land and is considered to be one of the major threats to global food security in the 21st century. Therefore, the ability of naturally salt-tolerant halophyte plants to sequester large quantities of salt in external structures, such as epidermal bladder cells (EBCs), is of great interest. Using Chenopodium quinoa, a pseudo-cereal halophyte of great economic potential, we have shown previously that, upon removal of salt bladders, quinoa becomes salt sensitive.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores how different root zones in bread and durum wheat respond to salt stress, focusing on the role of cytosolic sodium (Na+) extrusion and its effects on plant tolerance.* -
  • Findings reveal that bread wheat exhibits better salt tolerance, attributed to its stronger ability to expel Na+ from the root elongation zone and sequester Na+ in vacuoles, compared to salt-sensitive durum wheat.* -
  • The research suggests that the root meristem may act as a salt sensor, and interruptions in this sensing mechanism lead to increased salt sensitivity by hindering Na+ storage in plant cells.*
View Article and Find Full Text PDF

Sound is a fundamental form of energy and it has been suggested that plants can make use of acoustic cues to obtain information regarding their environments and alter and fine-tune their growth and development. Despite an increasing body of evidence indicating that it can influence plant growth and physiology, many questions concerning the effect of sound waves on plant growth and the underlying signalling mechanisms remains unknown. Here we show that in Arabidopsis thaliana, exposure to sound waves (200Hz) for 2 weeks induced positive phonotropism in roots, which grew towards to sound source.

View Article and Find Full Text PDF

Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build-up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR.

View Article and Find Full Text PDF
Article Synopsis
  • Olive oil samples from six different cultivars were analyzed and classified as extra virgin based on chemical tests, then assessed for flavor characteristics using PTR-ToF-MS technology.
  • A hierarchical clustering analysis revealed three distinct groups of olive oil, with one group showing off-flavors, regardless of the cultivar or growing environment.
  • A correlation index was developed to connect mass data from PTR-ToF-MS with sensory attributes, leading to a color-coded card that effectively distinguishes high-quality extra virgin olive oil from those with off-flavors.
View Article and Find Full Text PDF

Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments. However, little direct supporting evidence is available. Here, Chenopodium quinoa plants were grown under saline conditions for 5 weeks.

View Article and Find Full Text PDF

Saline soils are highly heterogeneous in time and space, and this is a critical factor influencing plant physiology and productivity. Temporal changes in soil salinity can alter plant responses to salinity, and pre-treating plants with low NaCl concentrations has been found to substantially increase salt tolerance in different species in a process called acclimation. However, it still remains unclear whether this process is common to all plants or is only expressed in certain genotypes.

View Article and Find Full Text PDF

Cerato-platanin (CP) is the founder of a fungal protein family consisting in non-catalytic secreted proteins, which work as virulence factors and/or as elicitors of defense responses and systemic resistance, thus acting as PAMPs (pathogen-associated molecular patterns). Moreover, CP has been defined an expansin-like protein showing the ability to weaken cellulose aggregates, like the canonical plant expansins do. Here, we deepen the knowledge on CP PAMP activity by the use of a multi-disciplinary approach: proteomic analysis, VOC (volatile organic compound) measurements, and gas exchange determination.

View Article and Find Full Text PDF

We investigated how the adaptation to metalliferous environments can influence the plant response to biotic stress. In a metallicolous and a non-metallicolous population of Silene paradoxa the induction of oxidative stress and the production of callose and volatiles were evaluated in the presence of copper and of the PAMP fungal protein cerato-platanin, separately and in combination. Our results showed incompatibility between the ordinary ROS-mediated response to fungal attack and the acquired mechanisms of preventing oxidative stress in the tolerant population.

View Article and Find Full Text PDF

In this paper volatile organic compounds (VOCs) from Tuber magnatum fruiting bodies were analyzed using a PTR-TOF-MS instrument. The aim was to characterize the VOC's profile of the fruiting bodies and identify if any VOCs were specific to a season and geographical areas. Multiple factorial analysis (MFA) was carried out on the signals obtained by MS.

View Article and Find Full Text PDF

This work investigated Cu-induced changes in photosynthetic activity in contrasting populations of Silene paradoxa L. A metallicolous Cu-tolerant population and a non-metallicolous sensitive population were grown in hydroponics and exposed to different CuSO4 treatments for different times. Copper accumulation, MDA concentrations, and several photosynthetic parameters were measured to assess different effects of Cu exposure on plants from the two populations.

View Article and Find Full Text PDF

Plant-ant interactions are generally considered as mutualisms, with both parties gaining benefits from the association. It has recently emerged that some of these mutualistic associations have, however, evolved towards other forms of relationships and, in particular, that plants may manipulate their partner ants to make reciprocation more beneficial, thereby stabilizing the mutualism. Focusing on plants bearing extrafloral nectaries, we review recent studies and address three key questions: (i) how can plants attract potential partners and maintain their services; (ii) are there compounds in extrafloral nectar that could mediate partner manipulation; and (iii) are ants susceptible to such compounds? After reviewing the current knowledge on plant-ant associations, we propose a possible scenario where plant-derived chemicals, such as secondary metabolites, known to have an impact on animal brain, could have evolved in plants to attract and manipulate ant behaviour.

View Article and Find Full Text PDF

The presence of Psidium guajava in polluted environments has been reported in recent studies, suggesting that this species has a high tolerance to the metal stress. The present study aims at a physiological characterization of P. guajava response to high nickel (Ni) concentrations in the root-zone.

View Article and Find Full Text PDF

Evidence suggests that heavy-metal tolerance can be induced in plants following pre-treatment with non-toxic metal concentrations, but the results are still controversial. In the present study, tobacco plants were exposed to increasing Zn2+ concentrations (up to 250 and/or 500 μM ZnSO4) with or without a 1-week acclimation period with 30 μM ZnSO4. Elevated Zn2+ was highly toxic for plants, and after 3 weeks of treatments there was a marked (≥50%) decline in plant growth in non-acclimated plants.

View Article and Find Full Text PDF

Background: Proton transfer reaction-mass spectrometry (PTR-MS), in its recently developed implementation based on time-of-flight mass spectrometry (PTR-TOFMS), was used to rapidly determine the volatile compounds present in fruits of Capsicum spp.

Results: We analyzed the volatile organic compounds emission profile of freshly cut chili peppers belonging to three species and 33 different cultivars. PTR-TOFMS data, analyzed with appropriate and advanced multivariate class-modeling approaches, perfectly discriminated among the three species (100% correct classification in validation set).

View Article and Find Full Text PDF