Excessive fluoride exposure beyond the tolerable limit may adversely impacts brain functionality. Betaine (BET), a trimethyl glycine, possesses antioxidant, anti-inflammatory and anti-apoptotic functions, although the underlying mechanisms of the role of BET on fluoride-induced neurotoxicity remain unelucidated. To assess the mechanism involved in the neuro-restorative role of BET on behavioural, neurochemical, and histological changes, we employed a rat model of sodium fluoride (NaF) exposure.
View Article and Find Full Text PDFAntioxidant-rich supplementation plays an essential role in the function of mammals' central nervous system. However, no research has documented the effect of berberine (BER) supplementation on the cerebrocerebellar function of prepubertal rats. The present study was designed to investigate the impact of BER supplementation on neurochemical and behavioural changes in prepubertal male rats.
View Article and Find Full Text PDFSodium fluoride (NaF) ingestion has several detrimental effects in humans and rodents. NaF mechanisms of toxicity include perturbation of intracellular redox homeostasis and apoptosis. Betaine (BET) is a modified amino acid with anti-inflammatory, antioxidant, and anti-apoptotic properties.
View Article and Find Full Text PDF