Publications by authors named "Baylink D"

Chromosomal rearrangements (CR) initiate leukemogenesis in approximately 50 % of acute myeloid leukemia (AML) patients; however, limited targeted therapies exist due to a lack of accurate molecular and genetic biomarkers of refractory mechanisms during treatment. Here, we investigated the pathological landscape of treatment resistance and relapse in 16 CR-AML patients by monitoring cytogenetic, RNAseq, and genome-wide changes among newly diagnosed, refractory, and relapsed AML. First, in FISH-diagnosed KMT2A (MLL gene, 11q23)/AFDN (AF6, 6q27)-rearrangement, RNA-sequencing identified an unknown CCDC32 (15q15.

View Article and Find Full Text PDF

This study assessed the novel concept that osteoclast-derived Grem1 has regulatory functions in the skeletal response to calcium stress using an osteoclastic Grem1 conditional knockout (cKO) mouse model. The calcium stress was initiated by feeding cKO mutants and wildtype (WT) littermates a calcium-deficient diet for 2 weeks. Deletion of Grem1 in mature osteoclasts did not affect developmental bone growth nor basal bone turnover.

View Article and Find Full Text PDF

T-cell-based adoptive cell therapies have emerged at the forefront of cancer immunotherapies; however, failed long-term survival and inevitable exhaustion of transplanted T lymphocytes in vivo limits clinical efficacy. Leukemia blasts possess enhanced glycolysis (Warburg effect), exploiting their microenvironment to deprive nutrients (e.g.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder in the intestines without a cure. Current therapies suppress inflammation to prevent further intestinal damage. However, healing already damaged intestinal epithelia is still an unmet medical need.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) has a poor survival rate for both pediatric and adult patients due to its frequent relapse. To elucidate the bioenergetic principle underlying AML relapse, we investigated the transcriptional regulation of mitochondrial-nuclear dual genomes responsible for metabolic plasticity in treatment-resistant blasts. Both the gain and loss of function results demonstrated that NFκB2, a noncanonical transcription factor (TF) of the NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) family, can control the expression of TFAM (mitochondrial transcription factor A), which is known to be essential for metabolic biogenesis.

View Article and Find Full Text PDF

Regulatory T (Treg) cells hold promise for the ultimate cure of immune-mediated diseases. However, how to effectively restore Treg function in patients remains unknown. Previous reports suggest that activated dendritic cells (DCs) de novo synthesize locally high concentrations of 1,25-dihydroxy vitamin D, i.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) patients have frequent mutations in FMS-like receptor tyrosine kinase 3 (FLT3-mut AML), who respond poorly to salvage chemotherapies and targeted therapies such as tyrosine kinase inhibitors (TKIs). Disease relapse is a common reason of treatment failures in FLT3-mut AML patients, but its intracellular refractory mechanism remains to be discovered. In this study, we designed serial time-course studies to investigate the biomarkers of TKI-resistant blasts and their survival mechanism.

View Article and Find Full Text PDF

Understanding the factors which shape T-lymphocyte immunity is critical for the development and application of future immunotherapeutic strategies in treating hematological malignancies. The thymus, a specialized central lymphoid organ, plays important roles in generating a diverse T lymphocyte repertoire during the infantile and juvenile stages of humans. However, age-associated thymic involution and diseases or treatment associated injury result in a decline in its continuous role in the maintenance of T cell-mediated anti-tumor/virus immunity.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML)-the most frequent form of adult blood cancer-is characterized by heterogeneous mechanisms and disease progression. Developing an effective therapeutic strategy that targets metabolic homeostasis and energy production in immature leukemic cells (blasts) is essential for overcoming relapse and improving the prognosis of AML patients with different subtypes. With respect to metabolic regulation, fructose-1,6-bisphosphatase 1 (FBP1) is a gluconeogenic enzyme that is vital to carbohydrate metabolism, since gluconeogenesis is the central pathway for the production of important metabolites and energy necessary to maintain normal cellular activities.

View Article and Find Full Text PDF

Introduction: This study was undertaken to gain mechanistic information about bone repair using the bone repletion model in aged Balb/cBy mice.

Materials And Methods: one month-old (young) mice were fed a calcium-deficient diet for 2 weeks and 8 month-old (adult) and 21-25 month-old (aged) female mice for 4 weeks during depletion, which was followed by feeding a calcium-sufficient diet for 16 days during repletion. To determine if prolonged repletion would improve bone repair, an additional group of aged mice were repleted for 4 additional weeks.

View Article and Find Full Text PDF

Acute liver injury is a common disease without effective therapy in humans. We sought to evaluate a combination therapy of insulin-like growth factor 1 (IGF-I) and BTP-2 in a mouse liver injury model induced by lipopolysaccharide (LPS). We chose this model because LPS is known to increase the expression of the transcription factors related to systemic inflammation (i.

View Article and Find Full Text PDF

Disease relapse is a common cause of treatment failure in FMS-like tyrosine kinase 3 (FLT3) mutated acute myeloid leukemia (AML). In this study, to identify therapeutic targets responsible for the survival and proliferation of leukemic cells (blasts) with FLT3 mutations after gilteritinib (GILT, a 2nd generation tyrosine kinase inhibitor (TKI)) treatment, we performed proteomic screening of cytokine release and in vitro/ex vivo studies to investigate their associated signaling pathways and transcriptional regulation. Here, we report that macrophage migration inhibition factor (MIF) was significantly increased in the supernatant of GILT-treated blasts when compared to untreated controls.

View Article and Find Full Text PDF

A major cause of osteoporosis is impaired coupled bone formation. Mechanistically, both osteoclast-derived and bone-derived growth factors have been previously implicated. Here, we hypothesize that the release of bone calcium during osteoclastic bone resorption is essential for coupled bone formation.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) has the lowest survival rate among the leukemias. Targeting intracellular metabolism and energy production in leukemic cells can be a promising therapeutic strategy for AML. Recently, we presented the successful use of vitamin D (1,25VD3) gene therapy to treat AML mouse models in vivo.

View Article and Find Full Text PDF

T cell based immunotherapies can be applicable to acute myeloid leukemia (AML). Therefore, the selection of optimal T cells, cell manufacturing, and therapeutic T cell engineering are essential for the development of effective adoptive T cell therapies for AML. Autologous tumor-infiltrating lymphocytes (TILs) have been in clinical trials to treat solid malignancies.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gut. Available drugs aim to suppress gut inflammation. These drugs have significantly delayed disease progression and improved patients' quality of life.

View Article and Find Full Text PDF

Acute lung injury (ALI) afflicts approximately 200,000 patients annually and has a 40% mortality rate. The COVID-19 pandemic has massively increased the rate of ALI incidence. The pathogenesis of ALI involves tissue damage from invading microbes and, in severe cases, the overexpression of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β).

View Article and Find Full Text PDF

Genome-edited human induced pluripotent stem cells (iPSCs) hold great promise for therapeutic applications. However, low editing efficiency has hampered the applications of CRISPR-Cas9 technology in creating knockout and homology-directed repair (HDR)-edited iPSC lines, particularly for silent genes. This is partially due to chromatin compaction, inevitably limiting Cas9 access to the target DNA.

View Article and Find Full Text PDF

Current treatment approaches for older adult patients with acute myeloid leukemia (AML) are often toxic and lack efficacy. Active vitamin D3 (1,25(OH)D3) has been shown to induce myeloid blast differentiation but at concentrations that have resulted in unacceptable, off-target hypercalcemia in clinical trials. In our study, we found that the combination of 1,25(OH)D3 and the hypomethylating agent (HMA) 5-Azacytidine (AZA) enhanced cytotoxicity and differentiation, and inhibited proliferation of several AML cell lines (MOLM-14, HL60) and primary AML patient samples.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic has led to a declaration of a Public Health Emergency of International Concern by the World Health Organization. As of May 18, 2020, there have been more than 4.7 million cases and over 316,000 deaths worldwide.

View Article and Find Full Text PDF

This study was undertaken to test two therapies for acute kidney injury (AKI) prevention, IGF-1, which is renal protective, and BTP-2, which is a calcium entry (SOCE) inhibitor. We utilized lipopolysaccharide (LPS) IP, as a systemic model of AKI and studied in five groups of animals. Three experiments showed that at 7 days: (1) LPS significantly reduced serum IGF-1 and intramuscular IGF-I in vivo gene therapy rescued this deficiency.

View Article and Find Full Text PDF

Here, we report a unique acute myeloid leukemia (AML) bone marrow-derived mesenchymal stem cell (MSC) with both mesenchymal and endothelial potential, which we have named Mesenchymal Cancer Stem Cells (MCSCs). These MCSCs are CD90-CD13-CD44+ and differ from MSCs in isolation, expansion, differentiation, immunophenotype, and cytokine release profile. Furthermore, blocking CD44 inhibited the proliferation and cluster formation of early MCSCs with lower ICAM-1 protein levels.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system and is caused by an aberrant immune response to myelin sheath. Disease-modifying medications, which mainly aim to suppress such aberrant immune response, have significantly improved MS treatment. However, the disease severity continues to worsen.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is an inflammatory chronic disease in the gastrointestinal tract (GUT). In the United States, there are approximately 1.4 million IBD patients.

View Article and Find Full Text PDF