Publications by authors named "Bayard Huck"

While A2A adenosine receptor (AR) was considered as a major contributor to adenosine-mediated immunosuppression, A2B, having the lowest affinity to adenosine, has also emerged as a potential contributor to tumor promotion. Therefore, in adenosine-rich tumor microenvironment (TME), where A2B could be complementary and/or compensatory to A2A, simultaneous targeting of A2A and A2B ARs can provide higher potential for cancer immunotherapy. We developed M1069-a highly selective dual antagonist of the A2A and A2B AR.

View Article and Find Full Text PDF
Article Synopsis
  • Hematopoietic progenitor kinase 1 (HPK1) is an important target in immune oncology research because it regulates key signaling pathways in immune cells.
  • Genetic deletion of HPK1 in T cells enhances their response to activation, and HPK1 knockout mice show improved anti-tumor effects.
  • The study details the development of effective HPK1 inhibitors through structure-based drug design, achieving strong potency and increased IL-2 cytokine secretion, which could enhance anti-tumor immune responses.
View Article and Find Full Text PDF

Wee1 is a tyrosine kinase that is highly expressed in several cancer types. Wee1 inhibition can lead to suppression of tumor cell proliferation and sensitization of cells to the effects of DNA-damaging agents. AZD1775 is a nonselective Wee1 inhibitor for which myelosuppression has been observed as a dose-limiting toxicity.

View Article and Find Full Text PDF

The advent of immune checkpoint inhibition (ICI) using antibodies against PD1 and its ligand PDL1 has prompted substantial efforts to develop complementary drugs. Although many of these are antibodies directed against additional checkpoint proteins, there is an increasing interest in small-molecule immuno-oncology drugs that address intracellular pathways, some of which have recently entered clinical trials. In parallel, small molecules that target pro-tumorigenic pathways in cancer cells and the tumour microenvironment have been found to have immunostimulatory effects that synergize with the action of ICI antibodies, leading to the approval of an increasing number of regimens that combine such drugs.

View Article and Find Full Text PDF

Herein, we report the discovery of a novel class of quinazoline carboxamides as dual p70S6k/Akt inhibitors for the treatment of tumors driven by alterations to the PI3K/Akt/mTOR (PAM) pathway. Through the screening of in-house proprietary kinase library, 4-benzylamino-quinazoline-8-carboxylic acid amide stood out, with sub-micromolar p70S6k biochemical activity, as the starting point for a structurally enabled p70S6K/Akt dual inhibitor program that led to the discovery of M2698, a dual p70S6k/Akt inhibitor. M2698 is kinase selective, possesses favorable physical, chemical, and DMPK profiles, is orally available and well tolerated, and displayed tumor control in multiple studies of PAM pathway-driven tumors.

View Article and Find Full Text PDF

Activation of the PI3K/Akt/mTOR kinase pathway is associated with human cancers. A dual p70S6K/Akt inhibitor is sufficient to inhibit strong tumor growth and to block negative impact of the compensatory Akt feedback loop activation. A scaffold docking strategy based on an existing quinazoline carboxamide series identified 4-aminopyrimidine analog 6, which showed a single-digit nanomolar and a micromolar potencies in p70S6K and Akt enzymatic assays.

View Article and Find Full Text PDF

Immuno-oncology therapies are revolutionizing the oncology landscape with checkpoint blockade becoming the treatment backbone for many indications. While inspiring, much work remains to increase the number of cancer patients that can benefit from these treatments. Thus, a new era of immuno-oncology research has begun which is focused on identifying novel combination regimes that lead to improved response rates.

View Article and Find Full Text PDF

Bruton's tyrosine kinase (BTK) inhibitors such as ibrutinib hold a prominent role in the treatment of B cell malignancies. However, further refinement is needed to this class of agents, particularly in terms of adverse events (potentially driven by kinase promiscuity), which preclude their evaluation in nononcology indications. Here, we report the discovery and preclinical characterization of evobrutinib, a potent, obligate covalent inhibitor with high kinase selectivity.

View Article and Find Full Text PDF

Immuno-oncology therapies have the potential to revolutionize the armamentarium of available cancer treatments. To further improve clinical response rates, researchers are looking for novel combination regimens, with checkpoint blockade being used as a backbone of the treatment. This Review highlights the significance of small molecules in this approach, which holds promise to provide increased benefit to cancer patients.

View Article and Find Full Text PDF

The frequency of PI3K/Akt/mTOR (PAM) Pathway mutations in human cancers sparked interest to determine if the pathway is druggable. The modest clinical benefit observed with mTOR rapalogs (temsirolimus and everolimus) provided further motivation to identify additional nodes of pathway inhibition that lead to improved clinical benefit. Akt is a central signaling node of the PAM pathway and could be an ideal target for improved pathway inhibition.

View Article and Find Full Text PDF

Dysregulated PI3K/Akt/mTOR (PAM) pathway signaling occurs in ~30% of human cancers, making it a rational target for new therapies; however, the effectiveness of some PAM pathway inhibitors, such as mTORC rapalogs, may be compromised by a compensatory feedback loop leading to Akt activation. In this study, the p70S6K/Akt dual inhibitor, M2698 (previously MSC2363318A), was characterized as a potential anti-cancer agent through examination of its pharmacokinetic, pharmacodynamic and metabolic properties, and anti-tumor activity. M2698 was highly potent in vitro (IC50 1 nM for p70S6K, Akt1 and Akt3 inhibition; IC50 17 nM for pGSK3β indirect inhibition) and in vivo (IC50 15 nM for pS6 indirect inhibition), and relatively selective (only 6/264 kinases had an IC50 within 10-fold of p70S6K).

View Article and Find Full Text PDF

Several potent Aurora kinase inhibitors derived from 5H-benzo[c][1,8]naphthyridin-6-one scaffold were identified. A crystal structure of Aurora kinase A in complex with an initial hit revealed a binding mode of the inhibitor within the ATP binding site and provided insight for structure-guided compound optimization. Subsequent SAR campaign provided a potent and selective pan Aurora inhibitor, which demonstrated potent target modulation and antiproliferative effects in the pancreatic cell line, MIAPaCa-2.

View Article and Find Full Text PDF

The introduction of non-natural modules could provide unprecedented control over folding/unfolding behavior, conformational stability, and biological function of proteins. Success requires the interrogation of candidate modules in natural contexts. Here, expressed protein ligation is used to replace a reverse turn in bovine pancreatic ribonuclease (RNase A) with a synthetic β-dipeptide: β²-homoalanine-β³-homoalanine.

View Article and Find Full Text PDF

5-HT2C agonists have shown efficacy in limiting food consumption and thus may serve as an important drug class in combating obesity. We describe the design and synthesis of a novel tricyclic single-nitrogen scaffold that was used to produce 5-HT2C agonists. SAR was developed around this chemotype and compounds were identified that were potent (Ki<15 nM) and selective relative to other 5-HT2 receptors.

View Article and Find Full Text PDF

The 5-HT2C receptor has been implicated in the regulation of appetite. As such, small molecule agonists to this receptor may serve as novel therapies to combat obesity. We describe here the identification, synthesis, and SAR of a 5-HT2C agonist from a unique pyrimidine-diazabicyclo[3.

View Article and Find Full Text PDF

[reaction: see text] We have recently shown that members of a new class of beta-peptides, containing 2,2-disubstituted pyrrolidine-4-carboxylic acid residues, display discrete conformational preferences despite the impossibility of internal hydrogen bonding (Huck et al. J. Am.

View Article and Find Full Text PDF

Flap endonuclease-1 (FEN1) is a key enzyme involved in base excision repair (BER), a primary pathway utilized by mammalian cells to repair DNA damage. Sensitization to DNA damaging agents is a potential method for the improvement of the therapeutic window of traditional chemotherapeutics. In this paper, we describe the identification and SAR of a series of low nanomolar FEN1 inhibitors.

View Article and Find Full Text PDF

We examine a new class of beta-peptides, 2,2-disubstituted pyrrolidine-4-carboxylic acid oligomers, and show that they manifest discrete conformational preferences despite the impossibility of internal hydrogen bonding. Numerous beta-peptide families have been described that display specific secondary structural preferences, but all of the conformations characterized in detail so far have contained internal hydrogen bonds. Internal hydrogen bonding is observed within the most common secondary structures of conventional peptides as well.

View Article and Find Full Text PDF

There have been several recent reports of chemopotentiation via inhibition of DNA repair processes. Flap endonuclease 1 (FEN1) is a key enzyme involved in base excision repair (BER), a primary pathway utilized by mammalian cells to repair DNA damage. In this report, we describe the identification and SAR of a series of 2,4-diketobutyric acid FEN1 inhibitors.

View Article and Find Full Text PDF

Protegrins are short, cationic peptides that display potent, broad-spectrum antimicrobial activity. PG-1, the first of the five natural analogues discovered, forms a rigid antiparallel two-stranded beta-sheet that is stabilized by two disulfide bonds. The two strands of the sheet are linked by a short two-residue loop segment.

View Article and Find Full Text PDF

beta-Amino acids are incorporated into an enzyme by using the method of expressed protein ligation. In the resulting semisynthetic enzyme, an R-nipecotic acid-S-nipecotic acid module replaces Asn113 and Pro114 of ribonuclease A. The semisynthetic enzyme not only retains full catalytic activity but also gains conformational stability.

View Article and Find Full Text PDF