Publications by authors named "Bayır H"

E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).

View Article and Find Full Text PDF

A peptic ulcer is a stomach lesion. It is generally caused by malnutrition, the use of anti-inflammatory medications, and an imbalance between mucosal defense systems. In fishes, the lubricous substance that called mucus secreted from the skin, prevents the entry of microorganisms that can enter the body through the skin.

View Article and Find Full Text PDF

In this study, sea buckthorn oil (SBO) was added to rainbow trout fish diets at 0.25%, 0.5%, and 1% rates in order to determine the effects on growth, feed conversion rate, survival rate, fillet quality, and physiological, biochemical and histopathological parameters.

View Article and Find Full Text PDF

Dysregulations of epithelial-immune interactions frequently culminate in chronic inflammatory diseases of the skin, lungs, kidneys, and gastrointestinal tract. Yet, the intraepithelial processes that initiate and perpetuate inflammation in these organs are poorly understood. Here, by utilizing redox lipidomics we identified ferroptosis-associated peroxidation of polyunsaturated phosphatidylethanolamines in the epithelia of patients with asthma, cystic fibrosis, psoriasis, and renal failure.

View Article and Find Full Text PDF

Mitochondrial trifunctional protein (TFP) deficiency is an inherited metabolic disorder leading to a block in long-chain fatty acid β-oxidation. Mutations in HADHA and HADHB, which encode the TFP α and β subunits, respectively, usually result in combined TFP deficiency. A single common mutation, HADHA c.

View Article and Find Full Text PDF

• Pyroptosis, an inflammatory cell death, has been implicated in the pathogenesis of total body irradiation (TBI) so we investigated time course and cell type involvement of key mediators in a murine model. • Pyroptotic mediators were most highly expressed at day 3 post TBI with immune cells from ileum being preferentially activated. • We also investigated the effectiveness of MCC950, a potent pyroptosis inhibitor, in our murine model showing a survival benefit at 50 mg/kg regardless of sex.

View Article and Find Full Text PDF
Article Synopsis
  • Ferroptosis is a key form of cell death linked to various diseases, characterized by excessive peroxidation of fatty acids in cell membranes, which causes the cell to rupture.
  • This process is influenced by iron and redox balance within cells but can also be targeted for pharmacological treatments, making ferroptosis-related proteins potential candidates for new therapies.
  • A research consortium in Germany, along with leading experts, aims to review the mechanisms, significance, and methodologies related to ferroptosis to promote further research and potential new treatments for diseases affected by this process.
View Article and Find Full Text PDF
Article Synopsis
  • Ovarian cancer poses a significant health risk and has limited treatment options, largely due to an immunosuppressive tumor microenvironment driven by tumor-associated macrophages (TAMs).
  • Targeting the retinoblastoma protein (Rb) through its LxCxE cleft pocket induces cell death in TAMs via ER stress and other death pathways, leading to improved T cell infiltration and reduced cancer progression in vivo.
  • The study reveals that higher Rb expression in TAMs correlates with worse outcomes for ovarian cancer patients, suggesting that targeting Rb could reshape the tumor microenvironment and enhance the effectiveness of immunotherapy.
View Article and Find Full Text PDF

Snyder-Robinson syndrome (SRS) is a rare X-linked recessive disorder caused by a mutation in the SMS gene, which encodes spermine synthase, and aberrant polyamine metabolism. SRS is characterized by intellectual disability, thin habitus, seizure, low muscle tone/hypotonia and osteoporosis. Progress towards understanding and treating SRS requires a model that recapitulates human gene variants and disease presentations.

View Article and Find Full Text PDF
Article Synopsis
  • - Macroautophagy is a complex process that can lead to cell death, influenced by various cell types and stressors, while ferroptosis is a specific kind of cell death related to lipid damage and iron dependency.
  • - Certain types of autophagy, like ferritinophagy and lipophagy, play a role in triggering ferroptotic cell death by degrading protective proteins, whereas others, such as reticulophagy, help protect cells from this damage.
  • - The review seeks to clarify the relationship between autophagy and ferroptosis, focusing on defining terms, outlining key components, discussing experimental techniques, and providing interpretation guidelines for ongoing research.
View Article and Find Full Text PDF

Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.

View Article and Find Full Text PDF

1. It was hypothesised that perch material and design may affect utility and maintenance energy demand in laying hens, affecting their feed form preferences and daily feed consumption. Accordingly, perch design and feed form on hen performance, gastrointestinal tract functions and some behavioural and welfare-related traits were studied in laying hens (ATAK-S) reared in enriched colony cages from 24 to 40 weeks of age.

View Article and Find Full Text PDF

Although the role of ferroptosis in killing tumor cells is well established, recent studies indicate that ferroptosis inducers also sabotage anti-tumor immunity by killing neutrophils and thus unexpectedly stimulate tumor growth, raising a serious issue about whether ferroptosis effectively suppresses tumor development in vivo. Through genome-wide CRISPR-Cas9 screenings, we discover a pleckstrin homology-like domain family A member 2 (PHLDA2)-mediated ferroptosis pathway that is neither ACSL4-dependent nor requires common ferroptosis inducers. PHLDA2-mediated ferroptosis acts through the peroxidation of phosphatidic acid (PA) upon high levels of reactive oxygen species (ROS).

View Article and Find Full Text PDF

The vast majority of membrane phospholipids (PLs) include two asymmetrically positioned fatty acyls: oxidizable polyunsaturated fatty acids (PUFA) attached predominantly at the sn2 position, and non-oxidizable saturated/monounsaturated acids (SFA/MUFA) localized at the sn1 position. The peroxidation of PUFA-PLs, particularly sn2-arachidonoyl(AA)- and sn2-adrenoyl(AdA)-containing phosphatidylethanolamines (PE), has been associated with the execution of ferroptosis, a program of regulated cell death. There is a minor subpopulation (≈1-2 mol %) of doubly PUFA-acylated phospholipids (di-PUFA-PLs) whose role in ferroptosis remains enigmatic.

View Article and Find Full Text PDF

Barth syndrome (BTHS) is a life-threatening genetic disorder with unknown pathogenicity caused by mutations in TAFAZZIN (TAZ) that affect remodeling of mitochondrial cardiolipin (CL). TAZ deficiency leads to accumulation of mono-lyso-CL (MLCL), which forms a peroxidase complex with cytochrome c (cyt c) capable of oxidizing polyunsaturated fatty acid-containing lipids. We hypothesized that accumulation of MLCL facilitates formation of anomalous MLCL-cyt c peroxidase complexes and peroxidation of polyunsaturated fatty acid phospholipids as the primary BTHS pathogenic mechanism.

View Article and Find Full Text PDF

Ferroptosis is a regulated form of cell death, the mechanism of which is still to be understood. 15-lipoxygenase (15LOX) complex with phosphatidylethanolamine (PE)-binding protein 1 (PEBP1) catalyzes the generation of pro-ferroptotic cell death signals, hydroperoxy-polyunsaturated PE. We focused on gaining new insights into the molecular basis of these pro-ferroptotic interactions using computational modeling and liquid chromatography-mass spectrometry experiments.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by central nervous (CNS) demyelination resulting in axonal injury and neurological deficits. Essentially, MS is driven by an auto-amplifying mechanism of inflammation and cell death. Current therapies mainly focus on disease modification by immunosuppression, while no treatment specifically focuses on controlling cell death injury.

View Article and Find Full Text PDF

Importance: Morbidity and mortality after pediatric cardiac arrest are chiefly due to hypoxic-ischemic brain injury. Brain features seen on magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) after arrest may identify injury and aid in outcome assessments.

Objective: To analyze the association of brain lesions seen on T2-weighted MRI and diffusion-weighted imaging and N-acetylaspartate (NAA) and lactate concentrations seen on MRS with 1-year outcomes after pediatric cardiac arrest.

View Article and Find Full Text PDF

Programmed ferroptotic death eliminates cells in all major organs and tissues with imbalanced redox metabolism due to overwhelming iron-catalyzed lipid peroxidation under insufficient control by thiols (Glutathione (GSH)). Ferroptosis has been associated with the pathogenesis of major chronic degenerative diseases and acute injuries of the brain, cardiovascular system, liver, kidneys, and other organs, and its manipulation offers a promising new strategy for anticancer therapy. This explains the high interest in designing new small-molecule-specific inhibitors against ferroptosis.

View Article and Find Full Text PDF

Ferroptosis is an iron dependent form of cell death, that is triggered by the discoordination of iron, lipids, and thiols. Its unique signature that distinguishes it from other forms of cell death is the formation and accumulation of lipid hydroperoxides, particularly oxidized forms of polyunsaturated phosphatidylethanolamines (PEs), which drives cell death. These readily undergo iron-catalyzed secondary free radical reactions leading to truncated products which retain the signature PE headgroup and which can readily react with nucleophilic moieties in proteins via their truncated electrophilic acyl chains.

View Article and Find Full Text PDF

Lipid peroxidation and its products, oxygenated polyunsaturated lipids, act as essential signals coordinating metabolism and physiology and can be deleterious to membranes when they accumulate in excessive amounts. There is an emerging understanding that regulation of polyunsaturated fatty acid (PUFA) phospholipid peroxidation, particularly of PUFA-phosphatidylethanolamine, is important in a newly discovered type of regulated cell death, ferroptosis. Among the most recently described regulatory mechanisms is the ferroptosis suppressor protein, which controls the peroxidation process due to its ability to reduce coenzyme Q (CoQ).

View Article and Find Full Text PDF

Reliable probing of cardiolipin (CL) content in dynamic cellular milieux presents significant challenges and great opportunities for understanding mitochondria-related diseases, including cancer, neurodegeneration, and diabetes mellitus. In intact respiring cells, selectivity and sensitivity for CL detection are technically demanding due to structural similarities among phospholipids and compartmental secludedness of the inner mitochondrial membrane. Here, we report a novel "turn-on" fluorescent probe for detecting CL in situ.

View Article and Find Full Text PDF

Peripheral glia, specifically the Schwann cells (SCs), have been implicated in the formation of the tumor microenvironment (TME) and in cancer progression. However, and analyses of how cancers reprogram SC functions in different organs of tumor-bearing mice are lacking. We generated Plp1-CreERT/tdTomato mice which harbor fluorescently labeled myelinated and non-myelin forming SCs.

View Article and Find Full Text PDF
Article Synopsis
  • Brain injury causes neuroinflammation, high extracellular glutamate levels, and mitochondrial dysfunction, all contributing to neuronal death.
  • The study analyzed patients with aneurysmal subarachnoid hemorrhage and conducted in vitro experiments to investigate the impact of these mechanisms on neuron health.
  • Results indicate that the inhibition of the 2-oxoglutarate dehydrogenase complex by nitric oxide leads to increased extracellular glutamate and subsequent neuronal death, while thiamine can help reverse this toxicity.
View Article and Find Full Text PDF